我们已经使用 NumPy.random.randint() 函数创建了一个包含随机整数的DataFrame。现在,我们将使用DataFrame.plot.hist()函数绘制这个DataFrame的直方图。 importpandasaspdimportnumpyasnpfrommatplotlibimportpyplotaspltdataframe=pd.DataFrame(np.random.randint(0,200, size=(200,3)), columns=list("ABC"))histogram=dat...
一、DataFrame 的常用操作 # 通过 DataFrame 构造数据框d = [[1.0,2.2,3,4],[1,2,3,4],[7,8,9,0],[3,5,7,9]]print(d) df = pd.DataFrame(d)print(df)# index 修改行名称,columns 修改列名称df = pd.DataFrame(d, index=['a','b','c','d'], columns=['A','B','C','D'])p...
在Pandas 中,数据可视化功能主要通过DataFrame.plot()和Series.plot()方法实现,这些方法实际上是对 Matplotlib 库的封装,简化了图表的绘制过程。 图表类型描述方法 折线图展示数据随时间或其他连续变量的变化趋势df.plot(kind='line') 柱状图比较不同类别的数据df.plot(kind='bar') ...
df3 = pd.DataFrame(np.random.randn(365, 2), columns=["B", "C"]).cumsum() df3["A"] = pd.Series(list(range(len(df))) df3.plot(x="A", y="B"); 其他图像 plot() 支持很多图像类型,包括bar, hist, box, density, area, scatter, hexbin, pie等,下面我们分别举例子来看下怎么使用...
plot函数是pandas中用于数据可视化的一个重要工具,通过plot函数,可以轻松地将DataFrame或Series对象中的数据以图形的形式展示出来。 plot函数支持多种类型的图形,包括折线图、柱状图、散点图、饼图等,这些不同类型的图形适用于不同的数据分析场景。此外,plot函数还支持通过参数设置来调整图形的样式,如颜色、标签、图例等...
pandas.DataFrame.hist — pandas 2.1.4 documentation pandas.DataFrame.plot.scatter — pandas 2.1.4 documentation pandas.DataFrame.plot.box — pandas 2.1.4 documentation 2、Pandas 与 Matplotlib 集成 Pandas 的数据可视化功能与 Matplotlib 和 Seaborn 等库紧密集成,提供了丰富的数据可视化选项。
plot方法默认是折线图,而它还支持以下几类图表类型: ‘line’ : 折线图 (default) ‘bar’ : 柱状图 ‘barh’ : 条形图 ‘hist’ : 直方图 ‘box’ : 箱型图 ‘kde’ : 密度图 ‘density’ : 同密度图 ‘area’ : 面积图 ‘pie’ : 饼图 ‘scatter’ : 散点图 (DataFrame only) ‘hexbin’ ...
Pandas的DataFrame也可以轻松地进行数据可视化。例如,可以使用pandas的内置函数plot()对DataFrame中的特定列进行绘图。下面是一个简单的例子:# 绘制age列的直方图 df['age'].plot(kind='hist')此外,也可以使用matplotlib库进行更复杂的数据可视化。例如,可以使用pandas的pivot_table()函数和matplotlib的heatmap()...
matplotlib.pyplot.hist()。 返回值: 其中的matplotlib.AxesSubplot或numpy.ndarray 例子 1)对所有数值列绘制直方图 importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt# 创建数据data = pd.DataFrame({'A': np.random.randn(1000),'B': np.random.randn(1000) +1,'C': np.random.randint(1,10,1000...
plot.area(stacked=False); ScatterDataFrame.plot.scatter() 可以创建点图。In [63]: df = pd.DataFrame(np.random.rand(50, 4), columns=["a", "b", "c", "d"])In [64]: df.plot.scatter(x="a", y="b");scatter图还可以带第三个轴:...