pandas.DataFrame(data=None,index=None,columns=None,dtype=None,copy=False) 参数说明: data:DataFrame 的数据部分,可以是字典、二维数组、Series、DataFrame 或其他可转换为 DataFrame 的对象。如果不提供此参数,则创建一个空的 DataFrame。 index:DataFrame 的行索引,用于标识每行数据。可以是列表、数组、索引对象等...
DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) DataFrame函数常用的参数及其说明如下所示。 data:接收ndarray,dict,list或DataFrame。表示输入数据。默认为None index:接收Index,ndarray。表示索引。默认为None columns:接收Index,ndarray。表示列标签(列名)。默认为None 创建DataFrame的方法...
示例:import pandas as pdimport numpy as np# 创建一个带有缺失值的DataFramedata = {'Name': ['John', 'Emma', np.nan],'Age': [25, np.nan, 35],'City': ['New York', 'London', 'Paris']}df = pd.DataFrame(data)print(df)程序输出: Name Age City0 John 25.0 New ...
pd.DataFrame(data,index,columns) 使用字典创建 当使用字典创建DataFrame对象时,字典的键作为DataFrame的column 名称(也就是Series对象的name属性),字典的值作为列的值,有多少个键值对,创建的DataFrame就会有多少个列,即Series对象。当指定了index以及columns时,index和columns中指定的内容会与字典中的对齐,其中index是Da...
index=[1,2,3] # 这里把一个拥有3个行的dataframe的index改成了1,2,3 修改dataframe的columns的顺序: dataframe_name = dataframe_name[['direct', 'display', 'email', 'organic_search' 'social']] # 具体做法是,在两层方括号里面,直接列出来你想要的columns顺序即可 对于column names使用正则表达式: #...
一般常用的有两个方法: 1、使用DataFrame.index = [newName],DataFrame.columns = [newName],这两种方法可以轻松实现。 2、使用rename方法(推荐): DataFrame.rename(mapper = None,index = None,columns = None,axis = None,copy = True,inplace = False,level = None ) 参数介绍: mapper,index,columns:...
1、使用DataFrame.index = [newName],DataFrame.columns = [newName],这两种方法可以轻松实现。 2、使用rename方法(推荐): DataFrame.rename(mapper = None,index = None,columns = None,axis = None,copy = True,inplace = False,level = None ) ...
在 Pandas DataFrame 中,重点词汇或短语包括: DataFrame:DataFrame 是 Pandas 中最常用的数据结构,它是一个二维表格,可以容纳不同类型的数据,并且每个数据都有对应的标签,方便用户进行数据操作。 Index:Index 是 DataFrame 的行索引,它是一个 Pandas Series 对象,包含了一组按顺序排列的标签。 Column:Column 是 ...
pandas-07 DataFrame修改index、columns名的方法 一般常用的有两个方法: 1、使用DataFrame.index = [newName],DataFrame.columns = [newName],这两种方法可以轻松实现。 2、使用rename方法(推荐): DataFrame.rename(mapper = None,index = None,columns = None,axis = None,copy = True,inplace = False,level...
pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: importpandas as pd df= pd.DataFrame({'A': [0, 1, 2],'B': [3, 4, 5]})printdf#结果:A B 0 03 1 1 4 2 2 5 行索引自动生成了0,1,2 如果要自己指定行索引和列索引,可以使用index和column参数: ...