unique()) # 查看'Gender'列的唯一值 print(df['Gender'].unique()) 在上面的示例中,我们首先创建了一个包含姓名、年龄和性别的简单DataFrame。然后,我们使用unique()函数分别查看’Name’、’Age’和’Gender’列的唯一值。输出结果将显示每列中所有唯一的元素。需要注意的是,unique()函数返回的是指定列中所有...
df = pd.DataFrame({'FirstName': ['Arun', 'Navneet', 'Shilpa', 'Prateek', 'Pyare', 'Prateek'], 'LastName': ['Singh', 'Yadav', 'Yadav', 'Shukla', 'Lal', 'Mishra'], 'Age': [26, 25, 25, 27, 28, 30]}) # To get unique values in 1 series/column print(f"Unique FN: ...
insert(loc, column, value[, allow_duplicates]) 在指定位置插入列到DataFrame中。 interpolate([method, axis, limit, inplace, ...]) 使用插值方法填充NaN值。 isetitem(loc, value) 在位置loc的列中设置给定值。 isin(values) 检查DataFrame中的每个元素是否包含在值中。 isna() 检测缺失值。 isnull() ...
1.df.index 将索引添加为新列 将索引添加为列的最简单方法是将df.index作为新列添加到Dataframe。考虑...
唯一值unique # List unique values in a DataFrame column df['Column Name'].unique() 类型转换 ### Convert Series datatype to numeric (will error if column has non-numeric values) pd.to_numeric(df['Column Name']) ### Convert Series datatype to numeric, changing non-numeric values to ...
insert(loc, column, value[, allow_duplicates]) 在指定位置插入列到DataFrame中。 interpolate([method, axis, limit, inplace, ...]) 使用插值方法填充NaN值。 isetitem(loc, value) 在位置loc的列中设置给定值。 isin(values) 检查DataFrame中的每个元素是否包含在值中。 isna() 检测缺失值。 isnull() ...
在Pandas中,我们可以使用nunique()函数来查看数据框中每一列的唯一值数量,这个函数会返回一个序列,其中每个元素是对应列的唯一值数量。 (图片来源网络,侵删) 以下是一个简单的例子: import pandas as pd 创建一个数据框 df = pd.DataFrame({ 'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', ...
# Getting a column by label df['rain_octsep'] 1. 2. 注意,当我们提取列的时候,会得到一个 series ,而不是 dataframe 。记得我们前面提到过,你可以把 dataframe 看作是一个 series 的字典,所以在抽取列的时候,我们就会得到一个 series。 使用点号获取列 ...
dropna()是一个Pandas库中的函数,用于从数据框(DataFrame)中删除包含缺失值(NaN)的行或列。它用于数据清洗和预处理阶段,以便去除缺失值,使数据更加规整。 ropna()函数的语法如下: DataFrame.dropna(axis=0, how=‘any’, thresh=None, subset=None, inplace=False) ...
Series s.loc[indexer] DataFrame df.loc[row_indexer,column_indexer] 基础知识 如在上一节介绍数据结构时提到的,使用[](即__getitem__,对于熟悉在 Python 中实现类行为的人)进行索引的主要功能是选择较低维度的切片。以下表格显示了使用[]索引pandas 对象时的返回类型值: 对象类型 选择 返回值类型 Series seri...