agg内接收聚合函数字典,其中key为列名,value为聚合函数或函数列表,可实现同时对多个不同列实现不同聚合统计。这里字典的key是要聚合的name字段,字典的value即为要用的聚合函数count,当然也可以是包含count的列表的形式。用字典传入聚合函数的形式下,统计结果都是一个dataframe,更进一步的说当传入字典的value是聚合函数列...
import pandas as pd df = pd.DataFrame({ 'a':[1,2,np.nan], 'b':[np.nan,1,...
在Pandas DataFrame中为新列设置参数通常是指根据现有数据创建一个新列,并可能应用某些条件或计算。以下是一些基本示例: ### 创建新列 假设你有一个DataFrame `df`,并且...
value = df.at[1, 'A']print(value) 输出结果:2 4. iat方法 用处:通过整数位置快速访问单个值。 语法规范:DataFrame.iat[row_position, column_position] row_position:行整数位置。 column_position:列整数位置。 使用实例:# 获取第二行和第一列的值value = df.iat[1, 0]print(value) 输出结果:2 5....
2 Pandas基本数据结构(Series、Dataframe) 2.1 Series 2.2 DataFrame 3 Pandas常用基本函数 (1) head和tail (2) unique和nunique (3) count和value_counts (4) describe和info (5) idxmax和nlargest (6) clip和replace (7) apply()函数 4 Pandas排序操作 ...
df=pd.DataFrame(ndarray_data,columns=['Site','Age']) # 打印数据帧 print(df) 输出结果如下: 从以上输出结果可以知道, DataFrame 数据类型一个表格,包含 rows(行) 和 columns(列): 还可以使用字典(key/value),其中字典的 key 为列名: 实例- 使用字典创建 ...
3.2 结合groupby使用count count函数经常与groupby一起使用,用于计算每个组中的记录数: importpandasaspd# 创建示例数据data={'category':['A','B','A','B','A','B','A'],'value':[1,2,3,4,5,6,7]}df=pd.DataFrame(data)# 计算每个类别的记录数category_counts=df.groupby('category').count(...
series是带标签的一维数组,所以还可以看做是类字典结构:标签是key,取值是value;而dataframe则可以看做是嵌套字典结构,其中列名是key,每一列的series是value。所以从这个角度讲,pandas数据创建的一种灵活方式就是通过字典或者嵌套字典,同时也自然衍生出了适用于series和dataframe的类似字典访问的接口,即通过loc索引访问。
df= pd.DataFrame({'key1':np.arange(10),'key2':np.random.rand(10)*10}) print(df) print('---') print(df.count(),'→ count统计非Na值的数量\n') print(df.min(),'→ min统计最小值\n',df['key2'].max(),'→ max统计最大值\n') print...
传入fill_value = n填充缺失值 df2.reindex(index = ['a','b','c','d'],columns = ['one','two','three','four'], fill_value = 100) 更换索引 在DataFrame数据中,如果不希望使用默认的行索引,则可以在创建时通过Index参数来设置。 df3=df1.set_index('city') display(df3) 查看DataFrame的常...