pandas.DataFrame(data=None,index=None,columns=None,dtype=None,copy=False) 参数说明: data:DataFrame 的数据部分,可以是字典、二维数组、Series、DataFrame 或其他可转换为 DataFrame 的对象。如果不提供此参数,则创建一个空的 DataFrame。 index:DataFrame 的行索引,用于标识每行数据。可以是列表、数组、索引对象等...
DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) DataFrame函数常用的参数及其说明如下所示。 data:接收ndarray,dict,list或DataFrame。表示输入数据。默认为None index:接收Index,ndarray。表示索引。默认为None columns:接收Index,ndarray。表示列标签(列名)。默认为None 创建DataFrame的方法...
示例:import pandas as pdimport numpy as np# 创建一个带有缺失值的DataFramedata = {'Name': ['John', 'Emma', np.nan],'Age': [25, np.nan, 35],'City': ['New York', 'London', 'Paris']}df = pd.DataFrame(data)print(df)程序输出: Name Age City0 John 25.0 New ...
DataFrame.rename(mapper = None,index = None,columns = None,axis = None,copy = True,inplace = False,level = None ) 参数介绍: mapper,index,columns:可以任选其一使用,可以是将index和columns结合使用。index和column直接传入mapper或者字典的形式。 axis:int或str,与mapper配合使用。可以是轴名称(‘index...
1、使用DataFrame.index = [newName],DataFrame.columns = [newName],这两种方法可以轻松实现。 2、使用rename方法(推荐): DataFrame.rename(mapper = None,index = None,columns = None,axis = None,copy = True,inplace = False,level = None ) ...
df = pd.DataFrame(data, index=['Row1', 'Row2', 'Row3'], columns=['Column1', 'Column2']) # 打印结果 print(df) 运行以上代码后,将创建一个带有行名和列名的DataFrame,输出结果应该如下(注意,原输出示例中存在格式错误,以下输出已修正): Column1 Column2 Row1 1 4 Row2 2 5 Row3 3 6 在...
pandas-07 DataFrame修改index、columns名的方法 一般常用的有两个方法: 1、使用DataFrame.index = [newName],DataFrame.columns = [newName],这两种方法可以轻松实现。 2、使用rename方法(推荐): DataFrame.rename(mapper = None,index = None,columns = None,axis = None,copy = True,inplace = False,level...
pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: importpandas as pd df= pd.DataFrame({'A': [0, 1, 2],'B': [3, 4, 5]})printdf#结果:A B 0 03 1 1 4 2 2 5 行索引自动生成了0,1,2 如果要自己指定行索引和列索引,可以使用index和column参数: ...
pd.DataFrame(data,index,columns) 使用字典创建 当使用字典创建DataFrame对象时,字典的键作为DataFrame的column 名称(也就是Series对象的name属性),字典的值作为列的值,有多少个键值对,创建的DataFrame就会有多少个列,即Series对象。当指定了index以及columns时,index和columns中指定的内容会与字典中的对齐,其中index是Da...
在Pandas中,对于index和column的引用和处理,是我们对于数据进行灵活提取与操作的制胜秘诀。如果数据是木偶,那么index和column就是我们拿在手里的一根根提线。因此,熟练掌握对于index和column的操作对我们的数据分析至关重要。 修改一个DataFrame的columns的name(重命名列名): dataframe[column_name].rename('industry') ...