在pandas中,常见的是DataFrame数据结构。axis=0表示跨行,沿着行索引向下执行方法。axis=1表示跨列,沿着列标签横向执行方法。案例说明:1、数据框中求和函数使用axis 对二维数组进行求和,df.sum(0),也就是axis=0,沿着行索引向下求和,也就是列标签的求和。在df.sum(1)中,axis=1,表示沿着列标签横向求和,...
Pandas之DataFrame DataFrame对象既有行索引,又有列索引。行索引,表明不同行,横向索引,叫index,0轴,axis=0。列索引,表明不同列,纵向索引,叫columns,1轴,axis=1。 importpandas as pdimportnumpy as np#创建DataFramet1=pd.DataFrame(np.arange(12).reshape(3,4))print(t1)'''0 1 2 3 0 0 1 2 3 1 ...
DataFrame.drop(self,labels = None,axis = 0,index = None,columns = None,level = None,inplace = False,errors ='raise' ) 通过指定标签名称和轴,或者直接指定索引或列名称来直接删除行或列。 常用参数含义: labels : 标签表示索引或列 axis: 指定轴,axis = 0(删除行) axis = 1(删除列) index : ...
坐标轴还是按照默认列“columns” (axis=0, default),如果要对行“index” 需要指定(axis=1)...
用自定义函数传给dataframe的时候,比较直观。 defdiv_zero(s):ifs['累计产值(元)']==0orisinstance(s['累计产值(元)'],str):return0else:return(s['累计已付']-s['其中:工伤'])/s['累计产值(元)']returns k['实际支付比例(不含工伤)']=k.apply(div_zero,axis=1) ...
一个DataFrame 对象有两个轴,分别是 “axis=0" 和“axis=1“ ,“axis=0” 代表“跨行”,“axis=1“代表“跨列”,显而易见Series 与 DataFrame 共享相同的 “axis=0" 方向——它沿着跨行的方向。 上图中的 DataFrame 对象沿着 “axis=0” 方向有索引:0,1,2,3,4,此外还有沿着 “axis=1” 方向的...
首先说结论:因为pandas是基于numpy模块,故其对axis的理解与numpy模块保持一致,即axis表示数组层级,若axis=i,则沿着第i维的方向进行操作。 一、理解DataFrame(二维的数据结构) 将DataFrame视作是共享同一个index的Series的集合,也可视作像数据库的记录表。如图所示: ...
在pandas中,常见的是DataFrame数据结构。 axis=0表示跨行,沿着行索引向下执行方法。 axis=1表示跨列,沿着列标签横向执行方法。 案例说明: 1、数据框中求和函数使用axis 对二维数组进行求和,df.sum(0),也就是axis=0,沿着行索引向下求和,也就是列标签的求和。
默认的情况我们是根据行索引进行排序,如果我们要指定根据列索引进行排序,需要传入参数axis=1。 我们还可以传入ascending这个参数,用来指定我们想要的排序顺序是正序还是倒序。 值排序 DataFrame的值排序有所不同,我们不能对行进行排序,只能针对列。我们通过by参数传入我们希望排序参照的列,可以是一列也可以是多列。
DataFrame中面向行和面向列的操作基本上是相同的,把行和列称作轴(axis),DataFrame是按照轴进行操作的,axis=0表示行轴;axis=1 表示列轴。 在操作DataFrame的函数中,通常有沿着轴来进行操作,沿着axis=0,表示对一列(column)的数据进行操作;沿着axis=1,表示对一行(row)的数据进行操作。