如果你想在 DataFrame 中添加一个名为 "index" 的列,可以使用 `reset_index()` 方法来重置索引,并将索引列作为 DataFrame 的一列。 下面是一个示例代码,展示如何在 Pandas DataFrame 中添加一个名为 "index" 的列: ```python import pandas as pd # 创建一个简单的 DataFrame df = pd.DataFrame({ 'A'...
importpandasaspd# 创建一个空的Dataframedf=pd.DataFrame(columns=['Column1','Column2'])# 定义递归函数defadd_row_recursive(dataframe,row_data):ifdataframe.empty:# 如果Dataframe为空,直接将行数据添加到Dataframedataframe=dataframe.append(row_data,ignore_index=True)returndataframeelse:# 如果Dataframe不为空...
import numpy as npimport pandas as pddf = pd.DataFrame({'key1':[4,5,3,np.nan,2],'key2':[1,2,np.nan,4,5],'key3':[1,2,3,'j','k']},index = ['a','b','c','d','e'])print(df)print(df['key1'].dtype,df['key2'].dtype,df['key3'].dtype)print('---')m1 =...
DataFrame(mydata) df # 输出 Column1 Column2 0 1 a 1 2 b 2 3 c 指定行索引: # 指定行索引 df.index = ['row1', 'row2', 'row3'] df # 输出 Column1 Column2 row1 1 a row2 2 b row3 3 c 使用另一个 Series 或数组作为索引: # 使用另一个 Series 或数组作为索引 index_series ...
shape 返回表示DataFrame的维度的元组。 size 返回表示对象中元素数量的整数。 style 返回一个Styler对象。 values 返回DataFrame的Numpy表示。 方法: 方法描述 abs() 返回每个元素的绝对值的Series/DataFrame。 add(other[, axis, level, fill_value]) 获取DataFrame和other的加法,逐元素执行(二进制运算符add)。 add...
1. DataFrameDataFrame是Pandas中最重要的数据结构之一,可以看作是一种二维表格数据结构,类似于Excel中的电子表格。如下图所示,一个表格在excel和pandas中的展示方式保持一致:DataFrame由行和列组成,每一列可以包含不同的数据类型(如整数、浮点数、字符串等),并且可以对数据进行灵活的操作和分析。它的具体结构在...
我们还可以仅使用特定列的特定行中的数据向 DataFrame 添加新的列。例如,假设你想在商店 2 和 3 中上一批新手表,并且新手表的数量与这些商店原有手表的库存一样。我们来看看如何编写代码 # We add a new column using data from particular rows in the watches column ...
max_columns = 40 1. 选取多个DataFrame列 代码语言:javascript 复制 # 用列表选取多个列 In[2]: movie = pd.read_csv('data/movie.csv') movie_actor_director = movie[['actor_1_name', 'actor_2_name', 'actor_3_name', 'director_name']] movie_actor_director.head() Out[2]: ...
以上创建方式都仅仅做一个了解即可,因为工作中dataframe的数据一般都是来自于读取外部文件数据,而不是自己手动去创建。 常见属性 1.index 行索引 2.columns 列索引 3.T 转置 4.values 值索引 5.describe 快速统计 DataFrame数据类型补充 在DataFrame中所有的字符类型数据在查看数据类型的时候都表示成object ...
Pandas 之 DataFrame 常用操作 importnumpyasnp importpandasaspd 1. 2. This section will walk you(引导你) through the fundamental(基本的) mechanics(方法) of interacting(交互) with the data contained in a Series or DataFrame. -> (引导你去了解基本的数据交互, 通过Series, DataFrame)....