它的DATAFRAME和Pandas的DataFrame基本都是一样的: df['r'] = some_expression # add a (virtual) column that will be computed on the fly df.mean(df.x), df.mean(df.r) # calculate statistics on normal and virtual columns 可视化方法也是: df.plot(df.x, df.y, show=True); # make a plot...
data.groupby(['year','gender']).agg(min_count=pd.NamedAgg(column='count',aggfunc='min'),max_count=pd.NamedAgg(column='count',aggfunc='max'),median=pd.NamedAgg(column='count',aggfunc='median')).reset_index(drop=False)
values:要聚合的列,可选,默认对所有列操作 index:column, Grouper, array,orlistof the previous 如果传递数组,它必须与数据的长度相同。该列表可以包含任何其他类型(列表除外)。在数据透视表索引上分组的键。如果传递一个数组,它的使用方式与列值相同 column:column, Grouper, array,orlistof the previous 如果传...
df.iloc[row_index, column_index] # 通过标签或位置选择数据 df.ix[row_index, column_name] # 选择指定的列 df.filter(items=['column_name1', 'column_name2']) # 选择列名匹配正则表达式的列 df.filter(regex='regex') # 随机选择 n 行数据 df.sample(n=5)数据...
对 DataFrame 使用 apply:data = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})# 定义一个自定义函数,将每列的平均值乘以 2defdouble_mean(column):return column.mean() * 2# 使用 apply 应用自定义函数,按列应用result = data.apply(double_mean)print(result)输出:A 6.0B ...
Parameters: axis : {0 or ‘index’, 1 or ‘columns’}, default 0 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_...
Pandas 数据结构 - DataFrame DataFrame 是 Pandas 中的另一个核心数据结构,类似于一个二维的表格或数据库中的数据表。 DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。 DataFrame 既有行索引也有列索引,它
boxplot是我们调用的箱线图函数,column选择箱线图的数值,by是选择分类变量,figsize是尺寸。 ax.get_xticklabels获取坐标轴刻度,即无法正确显示城市名的白框,利用set_fontpeoperties更改字体。于是获得了我们想要的箱线图。改变字体还有其他方法,大家可以网上搜索关键字「matplotlib 中文字体」,都有相应教程。 从图上...
data['column'].nunique():显示有多少个唯一值 data['column'].unique():显示所有的唯一值 (3) count和value_counts data['column'].count():返回非缺失值元素个数 data['column'].value_counts():返回每个元素有多少个 (4) describe和info
print(by_column.sum()) 1. 2. 3. 4. 5. 6. –> 输出的结果为:(要想分组之后产生我们需要的数据,需要添加一些方法,比如这里的.sum()汇总) 0 0 1 2 31 4 5 6 72 8 9 10 113 12 13 14 15 one two0 1 51 9 132 17 213 25 29 1. 2. 3. 4. 5. 6. 7. 8....