从以上输出结果可以知道, DataFrame 数据类型一个表格,包含 rows(行) 和 columns(列): 还可以使用字典(key/value),其中字典的 key 为列名: 实例- 使用字典创建 importpandasaspd data=[{'a':1,'b':2},{'a':5,'b':10,'c':20}] df=pd.DataFrame(data) print(df) 输出结果为: a b c012NaN15102...
以下是一些示例用法:对 Series 使用 value_counts:import pandas as pddata = pd.Series([1, 2, 2, 3, 3, 3, 4, 4, None, None])# 计算 Series 中各个值的频次value_counts = data.value_counts()print(value_counts)输出:3.0 32.0 24.0 21.0 1dtype: int64在这个示例中,valu...
df = pd.DataFrame({'Sp':['a','b','c','d','e','f'], 'Mt':['s1', 's1', 's2','s2','s2','s3'], 'Value':[1,2,3,4,5,6], 'Count':[3,2,5,10,10,6]}) df df.iloc[df.groupby(['Mt']).apply(lambda x: x['Count'].idxmax())] 先按Mt列进行分组,然后对分组...
(2)‘records’ : list like [{column -> value}, … , {column -> value}] records 以columns:values的形式输出 (3)‘index’ : dict like {index -> {column -> value}} index 以index:{columns:values}…的形式输出 (4)‘columns’ : dict like {column -> {index -> value}},默认该格式。
fillna(value) # 填充缺失值 # 数据转换和处理 df.groupby(column_name).mean() # 按列名分组并计算均值 df[column_name].apply(function) # 对某一列应用自定义函数 数据可视化 import matplotlib.pyplot as plt # 绘制柱状图 df[column_name].plot(kind="bar") # 绘制散点图 df.plot(...
data['column'].nunique():显示有多少个唯一值 data['column'].unique():显示所有的唯一值 (3) count和value_counts data['column'].count():返回非缺失值元素个数 data['column'].value_counts():返回每个元素有多少个 (4) describe和info
df.replace('old_value', 'new_value') # 检查是否有重复的数据 df.duplicated() # 删除重复的数据 df.drop_duplicates()数据选择和切片函数说明 df[column_name] 选择指定的列; df.loc[row_index, column_name] 通过标签选择数据; df.iloc[row_index, column_index] 通过位置选择数据; df.ix[row_index...
sort_values(by=column)[-n:] tips.groupby('smoker').apply(top) 如果传入apply的方法里有可变参数的话,我们可以自定义这些参数的值: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 tips.groupby(['smoker','day']).apply(top,n=1,column='total_bill') 从上面的例子可以看出,分组键会跟原始对象...
# Quick examples of count unique values in column # Example 1: Get Unique Count # Using Series.unique() count = df.Courses.unique().size # Example 2: Using Series.nunique() count = df.Courses.nunique() # Example 3: Get frequency of each value ...
现在我们将实现一个分布式的pandas.Series.value_counts()。这个工作流程的峰值内存使用量是最大块的内存,再加上一个小系列存储到目前为止的唯一值计数。只要每个单独的文件都适合内存,这将适用于任意大小的数据集。 代码语言:javascript 代码运行次数:0 运行 复制 In [32]: %%time ...: files = pathlib.Path...