To apply a function to multiple columns of a Pandas DataFrame, you can simply use the DataFrame.apply() method by specifying the column names. The method itself takes a function as a parameter that has to be applied on the columns.
In Pandas, the apply() function can indeed be used to return multiple columns by returning a pandas Series or DataFrame from the applied function. In this article, I will explain how to return multiple columns from the pandas apply() function....
nopython=True, cache=True) def custom_mean_jitted(x): return (x * x).mean() In [4]: %time out = rolling_df.apply(custom_mean, raw=True) CPU times: user 3.57 s, sys: 43.8 ms, total: 3.61 s Wall time: 3.57 s
DataFrame([[4, 9], ] * 3, columns =['A', 'B']) print('Data Frame:') display(dataFrame) # Using pandas.DataFrame.apply() on the data frame print('Returning multiple columns from Pandas apply()') dataFrame.apply(numpy.sum, axis = 1) ...
Whenever we want to perform some operation on the entire DataFrame, we either use apply method. It is used on the grouped objects in pandas DataFrame. The apply() method Theapply()method passes the columns of each group in the form of a DataFrame inside the function which is descri...
# Groupby & multiple aggregations on different columns result = df.groupby('Courses').aggregate({'Duration':'count','Fee':['min','max']}) Pandas GroupBy Multiple Columns Example You can apply different aggregation functions to different columns in a singlegroupbyoperation using theagg()method....
pd.options.mode.copy_on_write = True 在pandas 3.0 发布之前就已经可用。 当你使用链式索引时,索引操作的顺序和类型部分地确定结果是原始对象的切片,还是切片的副本。 pandas 有 SettingWithCopyWarning,因为在切片的副本上赋值通常不是有意的,而是由于链式索引返回了一个副本而预期的是一个切片引起的错误。 如果...
First let's create duplicate columns by: df.columns=['Date','Date','Depth','Magnitude Type','Type','Magnitude']df Copy A general solution whichconcatenates columns with duplicate names can be: df.groupby(df.columns,axis=1).agg(lambdax:x.apply(lambday:','.join([str(l)forlinyifstr(l...
df['修改的列'] = df['条件列'].apply(调用函数名) import pandas as pd def test(): # 读取Excel文件 df = pd.read_excel('测试数据.xlsx') def modify_value(x): if x < 5: return '是' elif x < 10: return '否' else: return 'x' # 插入列 for col_num in range(4, 9): df....
#apply()函数使用案例# # 导入 numpy 库 import numpy as np # 导入 pandas 库 import pandas as pd # 定义 DataFrame # 数据为 3 行 4 列 s_data = pd.DataFrame([[5.1,3.5,1.4,0.2], [6.1,3.7,4.1,1.5], [5.8,2.7,5.1,1.9]], columns=['feature_one','feature_two','feature_three','fea...