We can create a Pandas pivot table with multiple columns and return reshaped DataFrame. By manipulating given index or column values we can reshape the
In Pandas, the apply() function can indeed be used to return multiple columns by returning a pandas Series or DataFrame from the applied function. In this article, I will explain how to return multiple columns from the pandas apply() function....
Python program to apply function that returns multiple values to rows in pandas DataFrame # Importing Pandas packageimportpandasaspd# Create a dictionaryd={'Num': [ iforiinrange(10)]}# Create DataFramedf=pd.DataFrame(d)# Display DataFrameprint("Original DataFrame:\n",df,"\n")# Defi...
First let's create duplicate columns by: df.columns = ['Date','Date','Depth','Magnitude Type','Type','Magnitude'] df Copy A general solution which concatenates columns with duplicate names can be: df.groupby(df.columns, axis=1).agg(lambdax: x.apply(lambday:','.join([str(l)forliny...
标记所有差异defhighlight_diff(data,color='yellow'):attr=f'background-color:{color}'other=data.xs('other',axis='columns',level=-1)self=data.xs('self',axis='columns',level=-1)returnpd.DataFrame(np.where(self!=other,attr,''),index=data.index,columns=data.columns)comparison.style.apply(...
#apply()函数使用案例# # 导入 numpy 库 import numpy as np # 导入 pandas 库 import pandas as pd # 定义 DataFrame # 数据为 3 行 4 列 s_data = pd.DataFrame([[5.1,3.5,1.4,0.2], [6.1,3.7,4.1,1.5], [5.8,2.7,5.1,1.9]], columns=['feature_one','feature_two','feature_three','fea...
df['修改的列'] = df['条件列'].apply(调用函数名) import pandas as pd def test(): # 读取Excel文件 df = pd.read_excel('测试数据.xlsx') def modify_value(x): if x < 5: return '是' elif x < 10: return '否' else: return 'x' # 插入列 for col_num in range(4, 9): df....
(self, key, value) 1284 ) 1285 1286 check_dict_or_set_indexers(key) 1287 key = com.apply_if_callable(key, self) -> 1288 cacher_needs_updating = self._check_is_chained_assignment_possible() 1289 1290 if key is Ellipsis: 1291 key = slice(None) ~/work/pandas/pandas/pandas/core/...
columns=['user', 'another_user', 'mate_type']) result = (pairs_df.groupby(['user', 'anoth...
In [13]:df2.<TAB>df2.A df2.booldf2.abs df2.boxplotdf2.add df2.Cdf2.add_prefix df2.clipdf2.add_suffix df2.clip_lowerdf2.align df2.clip_upperdf2.all df2.columnsdf2.any df2.combinedf2.append df2.combine_firstdf2.apply df2.compounddf2.applymap df2.consolidatedf2.as_blocks...