20,30],'C':['pandasdataframe.com','modify','columns']})# 定义一个函数,如果数值大于10,加10defadd_ten(x):returnx+10ifx>10elsex# 对'A'和'B'列应用条件函数df[['A','B']]=df[['A','B']].applymap(add_ten)print(df)
To apply a function to multiple columns of a Pandas DataFrame, you can simply use the DataFrame.apply() method by specifying the column names. The method itself takes a function as a parameter that has to be applied on the columns.
In Pandas, the apply() function can indeed be used to return multiple columns by returning a pandas Series or DataFrame from the applied function. In this article, I will explain how to return multiple columns from the pandas apply() function....
Whenever we want to perform some operation on the entire DataFrame, we either use apply method. It is used on the grouped objects in pandas DataFrame. The apply() method Theapply()method passes the columns of each group in the form of a DataFrame inside the function which is descri...
可以对 DataFrame 的多列使用apply函数,并传递多个参数。 importpandasaspd# 创建DataFramedf=pd.DataFrame({'A':range(1,6),'B':range(10,15)})# 定义一个处理多列的函数defsum_columns(x,y,factor):return(x+y)*factor# 使用 apply 函数df['C']=df.apply(lambdarow:sum_columns(row['A'],row['...
import pandas as pd import numpy as np data = [(3,5,7), (2,4,6),(5,8,9)] df = pd.DataFrame(data, columns = ['A','B','C']) print(df) # Using Dataframe.apply() # To apply function to every row def add(row): return row[0]+row[1]+row[2] df['new_col'] = df...
运行apply函数,记录耗时: for col in md_data.columns: md_data[col] = md_data.apply(lambda x: apply_md5(x[col]), axis=1) 查看运行结果: 4. Pandarallel测试 Pandarallel特点: 非常简单实现Pandas并行; 没有自己的读取文件方式,依赖Pandas读取文件; 用户文档: 读取数据集,记录耗时: import pandas as...
将apply()函数应用于Pandas中的多个列?尝试使用以下代码,它应该会给出与在combined列上运行上述函数时...
#apply()函数使用案例# # 导入 numpy 库 import numpy as np # 导入 pandas 库 import pandas as pd # 定义 DataFrame # 数据为 3 行 4 列 s_data = pd.DataFrame([[5.1,3.5,1.4,0.2], [6.1,3.7,4.1,1.5], [5.8,2.7,5.1,1.9]], columns=['feature_one','feature_two','feature_three','fea...
标记所有差异defhighlight_diff(data,color='yellow'):attr=f'background-color:{color}'other=data.xs('other',axis='columns',level=-1)self=data.xs('self',axis='columns',level=-1)returnpd.DataFrame(np.where(self!=other,attr,''),index=data.index,columns=data.columns)comparison.style.apply(...