To apply a function to multiple columns of a Pandas DataFrame, you can simply use the DataFrame.apply() method by specifying the column names. The method itself takes a function as a parameter that has to be applied on the columns.
In Pandas, the apply() function can indeed be used to return multiple columns by returning a pandas Series or DataFrame from the applied function. In this
DataFrame([[4, 9], ] * 3, columns =['A', 'B']) print('Data Frame:') display(dataFrame) # Using pandas.DataFrame.apply() on the data frame print('Returning multiple columns from Pandas apply()') dataFrame.apply(numpy.sqrt)
Whenever we want to perform some operation on the entire DataFrame, we either use apply method. It is used on the grouped objects in pandas DataFrame. The apply() method Theapply()method passes the columns of each group in the form of a DataFrame inside the function which is descri...
# Groupby & multiple aggregations on different columns result = df.groupby('Courses').aggregate({'Duration':'count','Fee':['min','max']}) Pandas GroupBy Multiple Columns Example You can apply different aggregation functions to different columns in a singlegroupbyoperation using theagg()method....
#apply()函数使用案例# # 导入 numpy 库 import numpy as np # 导入 pandas 库 import pandas as pd # 定义 DataFrame # 数据为 3 行 4 列 s_data = pd.DataFrame([[5.1,3.5,1.4,0.2], [6.1,3.7,4.1,1.5], [5.8,2.7,5.1,1.9]], columns=['feature_one','feature_two','feature_three','fea...
1: Combine multiple columns using string concatenation Let's start with most simple example - to combine two string columns into a single one separated by a comma: df['Magnitude Type']+', '+df['Type'] Copy result will be: 0 MW, Earthquake ...
(self, key, value) 1284 ) 1285 1286 check_dict_or_set_indexers(key) 1287 key = com.apply_if_callable(key, self) -> 1288 cacher_needs_updating = self._check_is_chained_assignment_possible() 1289 1290 if key is Ellipsis: 1291 key = slice(None) ~/work/pandas/pandas/pandas/core/...
As you can see, the result of the aggregation will have the group names as the new index along the grouped axis. In the case of multiple keys, the result is aMultiIndexby default, though this can be changed by using theas_indexoption: ...
In [13]:df2.<TAB>df2.A df2.booldf2.abs df2.boxplotdf2.add df2.Cdf2.add_prefix df2.clipdf2.add_suffix df2.clip_lowerdf2.align df2.clip_upperdf2.all df2.columnsdf2.any df2.combinedf2.append df2.combine_firstdf2.apply df2.compounddf2.applymap df2.consolidatedf2.as_blocks...