为了充分利用不同层级的特征信息,研究者们提出了多种颈部(Neck)结构,其中最具代表性的就是Feature Pyramid Network(FPN)和Path Aggregation Network(PAN)。这些结构在诸如Faster R-CNN、YOLOv3等现代目标检测算法中发挥着重要作用。 FPN:Feature Pyramid Network FPN通过构建一个自顶向下的路径和一个横向连接,将高分辨...
FPN是自向下的,将高层的特征信息通过上采样的方式进行传递融合,得到进行预测的特征图。FPN+PAN结构进行融合其中包含两个PAN结构。这样结合操作,FPN层自向下传达强语义特征,而特征金字塔则自底向上传达强定位特征,两两联手,从不同的主干层对不同的检测层进行参数聚合,这样的操作确实很皮...
本视频是对YOLOV8进行模块修改,具体是将颈部特征融合的PAN结构替换成AFPN,并进行了十分详细的讲解分析,看完一定有收获,自己改代码也是如此!!!快来试试吧,小伙伴们~别忘了一件三联哦~, 视频播放量 9781、弹幕量 0、点赞数 252、投硬币枚数 201、收藏人数 650、转发人
在实际应用中,FPN+PAN结构和SPP结构常常被结合使用,以进一步提高目标检测的性能。例如,在YOLOv4等先进的目标检测算法中,就同时采用了这两种结构。 为了充分发挥这些结构的优势,以下是一些实践经验和建议: 合理调整网络参数:在使用FPN+PAN和SPP结构时,需要根据具体的任务和数据集调整网络参数,如特征金字塔的层数、池化操...
增强多尺度特征融合:FPN+PAN结构通过双向特征传递,实现了不同尺度特征图的充分融合,既保留了高层的语义信息,又利用了低层的定位信息。 提升检测性能:在目标检测任务中,FPN+PAN结构能够显著提高对不同尺度目标的检测精度,尤其是对于小目标和遮挡目标的检测。 泛化能力强:该结构不仅适用于YOLO系列模型,还可广泛应用于其...
本视频是对YOLOV8进行模块修改,具体是将颈部特征融合的PAN结构替换成AFPN,并进行了十分详细的讲解分析,看完一定有收获,自己改代码也是如此!!!快来试试吧,小伙伴们~别忘了一件三联哦~, 视频播放量 9824、弹幕量 0、点赞数 252、投硬币枚数 201、收藏人数 651、转发人
本视频是对YOLOV8进行模块修改,具体是将颈部特征融合的PAN结构替换成AFPN,并进行了十分详细的讲解分析,看完一定有收获,自己改代码也是如此!!!快来试试吧,小伙伴们~别忘了一件三联哦~, 视频播放量 9554、弹幕量 0、点赞数 250、投硬币枚数 199、收藏人数 647、转发人