为了充分利用不同层级的特征信息,研究者们提出了多种颈部(Neck)结构,其中最具代表性的就是Feature Pyramid Network(FPN)和Path Aggregation Network(PAN)。这些结构在诸如Faster R-CNN、YOLOv3等现代目标检测算法中发挥着重要作用。 FPN:Feature Pyramid Network FPN通过构建一个自顶向下的路径和一个横向连接,将高分辨...
本视频是对YOLOV8进行模块修改,具体是将颈部特征融合的PAN结构替换成AFPN,并进行了十分详细的讲解分析,看完一定有收获,自己改代码也是如此!!!快来试试吧,小伙伴们~别忘了一件三联哦~, 视频播放量 9869、弹幕量 0、点赞数 253、投硬币枚数 203、收藏人数 656、转发人
在实际应用中,FPN+PAN结构和SPP结构常常被结合使用,以进一步提高目标检测的性能。例如,在YOLOv4等先进的目标检测算法中,就同时采用了这两种结构。 为了充分发挥这些结构的优势,以下是一些实践经验和建议: 合理调整网络参数:在使用FPN+PAN和SPP结构时,需要根据具体的任务和数据集调整网络参数,如特征金字塔的层数、池化操...
尽管FPN结构有效提升了多尺度特征的融合效果,但它主要关注于自顶向下的语义信息传递,对低层特征图的定位信息利用不足。PAN结构正是在此基础上进行了补充,通过自底向上的路径聚合,将低层特征图的定位信息传递给高层特征图,进一步增强金字塔的定位能力。 三、FPN+PAN结构的优势 增强多尺度特征融合:FPN+PAN结构通过双向...