一、Prompt Tuning 二、P-Tuning 三、P-Tuning v2 四、Prefix Tuning 五、Adapter 5.1 Adapter Fusion 5.2 AdapterDrop 六、LoRA 预训练大模型虽然具有强大的泛化能力和广泛的知识,但它们通常是针对大量通用数据集进行训练的,这使得它们在处理特定任务时可能无法达到最佳效果,比如ChatGPT、混元、文心一言在回答一些常识...
一、Lora 1.原理解析 开局一张图,下面... 1)详细介绍 LoRA的原理比较简单,我们以整个神经网络模型的某一具体全连接层为例,先来看一下如果是在原始的全量参数上进行微调是怎么做的,其本质就是在原始模型参数上通过微调加入增量 W=W0+ΔW 。 对于大模型而言,参数量是巨大的,进行大模型的全参数微调所耗费的...
P-tuning v2 微调方法是 P-tuning v1 微调方法的改进版,同时借鉴了 prefix-tuning 微调的方法。如下图所示: 与P-tuning v1 微调方法相比,P-tuning v2 微调方法采用了 prefix-tuning 的做法,在输入前面的每一层都加入可微调的参数。在 prefix 部分,每一层的 transformer 的 embedding 输入都需要被微调,而 P...
LoRA(Low-Rank Adaptation)是一种参数高效的微调方法,其核心思想是用更少的训练参数来近似全参数微调所得的增量参数。LoRA通过引入两个低秩矩阵A和B,将原始权重矩阵的更新表示为这两个矩阵的乘积(即AB),从而大大减少了可训练参数量。 应用场景:LoRA特别适用于资源受限的环境,如边缘计算、移动设备等。通过减少显存占...
LoRA是一种半监督学习算法,旨在减少微调过程中的标签数据需求。它通过在预训练模型中引入可学习的参数,使得模型能够在只使用少量标签数据的情况下进行有效的微调。LoRA的主要思想是在保持预训练模型不变的情况下,通过调整可学习参数来适应特定任务。这种方法在自然语言处理和计算机视觉领域都取得了良好的效果。优点: 减少...
LoRA对决P-Tuning,谁更强? 在探索大模型的参数高效指令调优方法时,我们选择了StarCoder系列作为基础模型,并使用CommitPackFT+OASST数据集进行指令调优。我们实现了7种不同的调优方法,包括全参数微调(FFT)和6种PEFT方法,如LoRA、P-Tuning、(IA)3等。这些方法在1B、3B、7B和16B四个不同规模的模型上进行了实验。
3. GLM模型包括GLM、GLM 130B和GLM 6B等不同规模的模型,需要不同算力来实现高效微调或全量微调。 4. Finetune过程中,介绍了Mixed Precision和ZeRO优化器等基础知识,以及P tuning和Lora等高效微调方法。 5. 借助Gradio,可以将模型前端部署,实现与用户的交互。
LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等] 由于LLM参数量都是在亿级以上,少则数十亿,多则数千亿。当我们想在用特定领域的数据微调模型时,如果想要full-tuning所有模型参数,看着是不太实际,一来需要相当多的硬件设备(GPU),二来需要相当长的训练时间。因此,我...
【共享LLM前沿】直观理解大模型预训练和微调!P-Tuning微调、Lora-QLora、RLHF基于人类反馈的强化学习微调,代码讲解共计3条视频,包括:大模型项目引入、1-2节 从预训练到微调、怎么理解大模型训练中的RLHF(人类反馈强化学习)?等,UP主更多精彩视频,请关注UP账号。
LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等] 由于LLM参数量都是在亿级以上,少则数十亿,多则数千亿。当我们想在用特定领域的数据微调模型时,如果想要full-tuning所有模型参数,看着是不太实际,一来需要相当多的硬件设备(GPU),二来需要相当长的训练时间。因此,我...