P-tuning v2 微调方法仅精调 0.1% 参数量(固定 LM 参数),在各个参数规模语言模型上,均取得和 Fine-tuning 相比肩的性能,解决了 P-tuning v1 在参数量不够多的模型中微调效果很差的问题。如下图所示(横坐标表示模型参数量,纵坐标表示微调效果):将 Prompt tuning 技术首次拓展至序列标注等复杂的 NLU ...
2)可插拔式的使用,可以快速针对不同的下游任务训练不同的lora权重(尝试过stable diffuion的不同LORA之后可以深刻的体会到它的优势) 3)低参数,适合小样本场景。 二、P-Tuning v2的原理解析 又是一张图,随后... 看上图右侧的红色箭头部分,P-Tuning v2的做法就是除了在embedding层拼接新的可训练参数,在每层的...
P-tuning v2 微调方法解决了 P-tuning v1 方法的缺陷,是一种参数高效的大语言模型微调方法。 P-tuning v2 微调方法仅精调 0.1% 参数量(固定 LM 参数),在各个参数规模语言模型上,均取得和 Fine-tuning 相比肩的性能,解决了 P-tuning v1 在参数量不够多的模型中微调效果很差的问题。如下图所示(横坐标表示...
P-tuning v2 微调方法解决了 P-tuning v1 方法的缺陷,是一种参数高效的大语言模型微调方法。 P-tuning v2 微调方法仅精调 0.1% 参数量(固定 LM 参数),在各个参数规模语言模型上,均取得和 Fine-tuning 相比肩的性能,解决了 P-tuning v1 在参数量不够多的模型中微调效果很差的问题。如下图所示(横坐标表示...
人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法 1.SFT 监督微调 1.1 SFT 监督微调基本概念 SFT(Supervised Fine-Tuning)监督微调是指在源数据集上预训练一个神经网络模型,即源模型。然后创建一个新的神经网络模型,即目标模型。目标模型复制了源模型上除了输出...
P-tuning v2 Freeze 2. LoRA 微调方法 2.1 LoRA 微调方法的基本概念 LoRA(Low-Rank Adaptation of Large Language Models),直译为大语言模型的低阶自适应。LoRA 的基本原理是冻结预训练好的模型权重参数,在冻结原模型参数的情况下,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数。由于这些新增参数数量...
LoRA是一种新型的微调方法,旨在解决SFT中的过拟合问题。LoRA通过增加一个参数来调整模型中的知识级别,从而使模型更好地适应特定任务。这种方法不需要大量带标签的数据,但可能需要更多的计算资源。 P-tuning v2P-tuning v2是一种改进的微调方法,通过使用预训练模型的一部分来进行微调,而不是使用整个预训练模型。这种...
大模型的低显存学习方法Lora和P-Tuning v2在减少参数调整的同时,实现了高效和低资源消耗的模型优化。Lora通过在全连接层中采用低秩分解,将增量参数分解为两个较小的全连接层A和B,有效地降低了微调参数的数量,避免了全参数微调的资源消耗。在Transformer中,Lora主要应用在multi-head attention部分,且...
2. LoRA微调:通过高阶矩阵秩的分解减少微调参数量,不改变预训练模型参数,新增参数。优点是减少了微调的参数量和成本,同时能达到与全模型微调相近的效果。 3. P-tuning v2微调:引入了prefix-tuning的思想,每一层都加入了prefix,并采用了多任务学习。解决了P-tuning v1中序列标注任务效果不佳和普遍性差的问题。其...
LoRA系列比如,LoRA(2021.11-Microsoft)、AdaLoRA(2023.03-Microsoft)、QLoRA(2023.05-Washington)。 还有不知道如何分类的比如,BitFit、Adapter Tuning及其变体、MAM Adapter、UniPELT等。 一.P-Tuning v2工作原理 1.Hard/Soft Prompt-Tuning如何设计 提示工程发展经过了从人工或半自动离散空间的hard prompt设计,...