2)可插拔式的使用,可以快速针对不同的下游任务训练不同的lora权重(尝试过stable diffuion的不同LORA之后可以深刻的体会到它的优势) 3)低参数,适合小样本场景。 二、P-Tuning v2的原理解析 又是一张图,随后... 看上图右侧的红色箭头部分,P-Tuning v2的做法就是除了在embedding层拼接新的可训练参数,在每层的...
Finetune: prompt tuning (P-tuning v2) Finetune: lora huggingface pert库 更新 高效微调: QLoRA longLORA DeepSpeed Chat: 开源的一个类ChatGPT的模型,并且完整复现了InstructGPT论文(chatGPT的重要方案)提出的三步训练法.可以实现一个脚本训练三步.详细内容参见官档 感兴趣的也可看下体验测试内容: 52AI:deep...
P-tuning v2 微调方法仅精调 0.1% 参数量(固定 LM 参数),在各个参数规模语言模型上,均取得和 Fine-tuning 相比肩的性能,解决了 P-tuning v1 在参数量不够多的模型中微调效果很差的问题。如下图所示(横坐标表示模型参数量,纵坐标表示微调效果):将 Prompt tuning 技术首次拓展至序列标注等复杂的 NLU ...
大模型微调作为大语言模型定制化开发的关键技术,在整个大语言模型技术应用落地过程扮演者不可或缺的重要角色~视频将为大家详细介绍目前最通用的微调技术,包括高效微调(PEFT)的系列方法:LoRA、Prefix-Tuning、Prompt-Tuning、P-Tuning v2等,以及最新的基于生物反馈机制的强化学习微调方法RLHF,帮助大家一步到位快速建立技术...
P-tuning v2 Freeze 2. LoRA 微调方法 2.1 LoRA 微调方法的基本概念 LoRA(Low-Rank Adaptation of Large Language Models),直译为大语言模型的低阶自适应。LoRA 的基本原理是冻结预训练好的模型权重参数,在冻结原模型参数的情况下,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数。由于这些新增参数数量...
LoRA是一种新型的微调方法,旨在解决SFT中的过拟合问题。LoRA通过增加一个参数来调整模型中的知识级别,从而使模型更好地适应特定任务。这种方法不需要大量带标签的数据,但可能需要更多的计算资源。 P-tuning v2P-tuning v2是一种改进的微调方法,通过使用预训练模型的一部分来进行微调,而不是使用整个预训练模型。这种...
大模型的低显存学习方法Lora和P-Tuning v2在减少参数调整的同时,实现了高效和低资源消耗的模型优化。Lora通过在全连接层中采用低秩分解,将增量参数分解为两个较小的全连接层A和B,有效地降低了微调参数的数量,避免了全参数微调的资源消耗。在Transformer中,Lora主要应用在multi-head attention部分,且...
人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法 1.SFT 监督微调 1.1 SFT 监督微调基本概念 SFT(Supervised Fine-Tuning)监督微调是指在源数据集上预训练一个神经网络模型,即源模型。然后创建一个新的神经网络模型,即目标模型。目标模型复制了源模型上除了输出...
LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等] 由于LLM参数量都是在亿级以上,少则数十亿,多则数千亿。当我们想在用特定领域的数据微调模型时,如果想要full-tuning所有模型参数,看着是不太实际,一来需要相当多的硬件设备(GPU),二来需要相当长的训练时间。因此,我...
LoRA对决P-Tuning,谁更强? 在探索大模型的参数高效指令调优方法时,我们选择了StarCoder系列作为基础模型,并使用CommitPackFT+OASST数据集进行指令调优。我们实现了7种不同的调优方法,包括全参数微调(FFT)和6种PEFT方法,如LoRA、P-Tuning、(IA)3等。这些方法在1B、3B、7B和16B四个不同规模的模型上进行了实验。