Prefix Tuning 简述 P-Tuning v2 简述 Prefix Tuning / P-Tuning v2 实战 结语 随着,ChatGPT 迅速爆火,引发了大模型的时代变革。然而对于普通大众来说,进行大模型的预训练或者全量微调遥不可及。由此,催生了各种参数高效微调技术,让科研人员或者普通开发者有机会尝试微调大模型。 因此,该技术值得我们进行深入分析其...
一、Prompt Tuning 二、P-Tuning 三、P-Tuning v2 四、Prefix Tuning 五、Adapter 5.1 Adapter Fusion 5.2 AdapterDrop 六、LoRA 预训练大模型虽然具有强大的泛化能力和广泛的知识,但它们通常是针对大量通用数据集进行训练的,这使得它们在处理特定任务时可能无法达到最佳效果,比如ChatGPT、混元、文心一言在回答一些常识...
对于复杂任务,可以考虑将Prefix Tuning/P-Tuning v2与其他微调技术(如Fine-tuning、Knowledge Distillation)结合使用,以获得更好的效果。 结论 Prefix Tuning和P-Tuning v2作为大模型参数高效微调技术的代表,通过优化模型参数的一部分而非全部,实现了在保持模型性能的同时降低计算成本的目标。在实际应用中,根据任务特点和...
实验结果表明,Prefix Tuning在各种任务上都能显著提高模型性能,同时大幅降低计算成本。具体来说,我们比较了Prefix Tuning与传统的Fine-tuning和Knowledge Distillation方法在图像分类、自然语言处理等任务上的性能表现。实验结果显示,Prefix Tuning在保持甚至超越其他方法性能的同时,计算成本大幅降低。在实际应用中,我们可以根据...
大模型微调作为大语言模型定制化开发的关键技术,在整个大语言模型技术应用落地过程扮演者不可或缺的重要角色~视频将为大家详细介绍目前最通用的微调技术,包括高效微调(PEFT)的系列方法:LoRA、Prefix-Tuning、Prompt-Tuning、P-Tuning v2等,以及最新的基于生物反馈机制的强化学习微调方法RLHF,帮助大家一步到位快速建立技术...
四、Prefix Tuning Prefix-tuning对应的论文是《Prefix-Tuning: Optimizing Continuous Prompts for Generation(2021)》,其核心思想是通过在输入序列前添加一组可训练的前缀向量(Prefix),这些前缀向量作为额外的上下文信息,与输入序列共同通过模型的注意力机制进行处理。不过详细的计算过程,建议阅读ICLR 2022的论文《TOWARDS ...
P-tuning 的实现方式包括随机初始化的提示词编码器,以及在输入层进行的优化更新。实验结果显示,LSTM 和 MLP 在编码器的选择上表现较好,且插入的提示词数量也与数据量有关,适量即可。P-tuning v2 可被视为 Prefix-tuning 的升级版,它在模型的每一层都插入了提示词,同时去除了原始版本中使用的 ...
v2版本主要基于p-tuning和prefix-tuning技术。prompt 向量是在模型的 embedding 层与其他输入 token 的 embedding 相拼接的,且通过在预训练模型的每一层引入可训练的 prompt 向量来提高模型对特定任务的适应性。 p-tuning主要是利用一个prompt encoder,将prompt先encoder再与input embedding进行拼接。 prefix-tuning是在...
p-tuning主要是利用一个prompt encoder,将prompt先encoder再与input embedding进行拼接。 prefix-tuning是在Transformer的Encoder和Decoder的网络中都加了一些特定的前缀。 而基于这两种技术的v2版本,则是将两者结合。在embedding与transformer模块都做了prompt向量的插入。
P-Tuning v2提升小模型上的Prompt Tuning,最关键的就是引入Prefix-tuning[2]技术。Prefix-tuning(前缀微调)最开始应用在NLG任务上,由[Prefix, x, y]三部分构成,如上图所示:Prefix为前缀,x为输入,y为输出。Prefix-tuning将预训练参数固定,Prefix参数进行微调:不仅只在embedding上进行微调,也在TransFormer上...