prefix-tuning对比P-tuning:Prefix-Tuning是将额外的embedding加在开头,看起来更像模仿Instruction指令,而P-Tuning位置不固定;Prefix-Tuning通过在每个层都添加可训练参数,通过MLP初始化,而P-Tuning只在输入的时候加入embedding,并通过LSTM或MLP初始化。 prefix-tuning对比Prompt-tuning:Prompt Tuning方式可以看做是Prefix ...
P-Tuning是 Prompt Tuning 的一种变体,其核心思想是在Prompt Tuning的基础上,在模型的输入层插入可训练的编码Token,加速收敛,并且使模型能够更好地理解下游任务的需求。P-Tuning中支持的编码格式主要有LSTM和MLP。 三、P-Tuning v2 之前的Prompt Tuning和P-Tuning方法存在一个主要的问题,就是缺少深度提示优化,因为...
P-Tuning的优点在于能够有效地优化模型参数,从而提高模型的准确率和鲁棒性。然而,P-Tuning也存在一定的缺点,例如它需要较大的计算资源和较长的时间来进行参数优化。应用场景:适用于对模型性能要求较高的任务,如机器翻译和对话系统等。四、Prompt TuningPrompt Tuning是一种基于Transformer模型的提示学习技术。它通过在模...
最大的不同是它们的切入点:prefix tuning以微调NLG任务为切入点,p-tuning v2以微调NLU任务为切入点。
tuning。embedding-only tuning又因为传播层数深,更新参数量小而不如prefix-tuning。
P-tuning和Prompt-tuning是两种基于提示的微调方法。P-tuning方法通过向模型输入提示信息来指导模型进行预测,而Prompt-tuning方法则通过在输入数据中嵌入提示信息来调整模型的行为。这两种方法都利用了模型对提示信息的敏感性,通过修改提示信息来改变模型的行为,从而实现微调。
P-tuning是一种改进的微调方法,通过引入一个参数化转换矩阵来调整预训练模型的权重。这个矩阵可以学习地改变预训练模型的权重分布,使其更好地适应特定任务。P-tuning在保持良好性能的同时,减少了微调过程中对初始模型的过度依赖。 Prompt-tuning Prompt-tuning是一种新颖的微调方法,利用了近年来自然语言处理领域的prompti...
原文:https://blog.csdn.net/weixin_43863869/article/details/134760405 __EOF__ 本文作者:marsggbo 本文链接:https://www.cnblogs.com/marsggbo/p/18276977 关于博主:评论和私信会在第一时间回复。或者直接私信我。 版权声明:私信联系获得许可后方可转载文章。
大模型参数高效微调技术实战(四)-Prefix Tuning / P-Tuning v2 引言 随着深度学习技术的飞速发展,大型语言模型(LLMs)在自然语言处理(NLP)领域取得了显著成就。然而,这些模型通常包含数以亿计的参数,使得全参数微调(Full Fine-tuning)变得既耗时又资源密集。因此,参数高效微调(Parameter-Efficient Fine-tuning, PEFT)...