检测:首先由重识别模块检测出当前关键帧Ka与匹配上的待吞并关键帧Ks,并获取两个子地图当中与匹配上的两个关键帧具有共视关系的关键点和关键帧。 位姿计算:通过Horn+RANSAC方法初步计算两个关键帧之间的变换关系,之后将待吞并地图的地图点通过这个变换投射到当前关键帧Ka上,再利用引导匹配的方法获得更丰富的匹配并进行...
1. 检测:首先由重识别模块检测出当前关键帧Ka与匹配上的待吞并关键帧Ks,并获取两个子地图当中与匹配上的两个关键帧具有共视关系的关键点和关键帧。 2. 位姿计算:通过Horn+RANSAC方法初步计算两个关键帧之间的变换关系,之后将待吞并地图的地图点通过这个变换投射到当前关键帧Ka上,再利用引导匹配的方法获得更丰富的匹...
接下来,就是完成初始化过程的最后一步:地图的初始化,是由CreateInitialMapMonocular函数完成的,本文基于该函数的流程出发,目的是为了结合代码流程,把单目初始化的上下两篇的知识点和ORB-SLAM3整个系统的知识点串联起来,系统化零碎的知识,告诉你平时学到的各个小知识应用在SLAM系统中的什么位置,达到快速高效学习的效果。
ORB-SLAM3在AirSim仿真环境中实时构建点云地图,利用了RGB图像和Depth图像,没有融合IMU数据,精度还比较低,稠密点云暂时没有回环检测功能.基础原理是在ORB-SLAM3关键帧提取处,根据当前从ORB-SLAM3计算得到的位置信息,插入当前帧的深度图的点云数据, 视频播放量 7910、弹
ORBSLAM3中,作者调用MapPoint::PredictScale函数,根据地图点到光心的距离,来预测一个类似特征金字塔的尺度。 因为在进行投影匹配的时候会给定特征点的搜索范围,由于考虑到处于不同尺度(也就是距离相机远近,位于图像金字塔中不同图层)的特征点受到相机旋转的影响不同,因此会希望距离相机近的点的搜索范围更大一点,距离相...
匹配的特征点的数量:当前帧和局部地图的匹配数量。相机位姿的observability:如果检测到的点几何条件不好,那么估计的相机位姿也不准(计算出来匹配点的距离大,特征属于不可用的特征)。相机位姿的observability(可观察性)利用位姿的协方差矩阵来估计相机的observability,假设每个地图点都估计的很准确,因为不能实时的计算...
1、纯视觉地图估计:初始化纯单目SLAM,并设定在2秒内运行,在4Hz处插入关键帧。在这段时间之后,我们得到了一张由k=10个相机姿势和数百个点组成的高比例地图,该地图使用纯视觉BA进行了优化(因子图中的图b)。这些姿势转换为body坐标系,得到轨迹 其中横杠表示最大比例变量。
采用ORB-SLAM 经典框架纯视觉初始化流程,按照关键帧速率 4Hz 持续运行2s,然后我们可以得到按比例缩放的地图,包括 10 个关键帧以及上百个地图点,然后通过 Visual-Only BA 进行优化。2> Inertial-Only 这一步目的是获得 IMU 参数最优估计。利用前述单目视觉 SLAM 初始化后稳 定运行的数据,以及这些关键帧之间的 ...
本项目以ORB-SLAM3的双目模式为基础,首先构建ORB特征地图并获得运动轨迹。然后基于目前主流的深度学习特征如SuperPoint、D2-Net等离线构建深度学习特征视觉地图。最后,实现在OBR-SLAM3系统中的定位模式修改,在关键帧中添加深度学习特征约束,实现长期视觉定位。效果如下 ...