ORB-SLAM提出一种自动初始化流程,能够根据场景自动的选择模型(Homography or Fundamental),当初始化质量不好的时候则延迟初始化。 本文对初始化过程中的诸多细节进行了总结。 本文属于个人记录,比较乱。 1. 初始化流程 Step 0. 选定一个参考帧,提取ORB特征 选择标准:提取到的ORB特征数量足够多>100个 Step 1. 匹...
单目初始化过程中最重要的是两个函数实现,分别是构建帧(Frame)和初始化(Track)。接下来,就是完成初始化过程的最后一步:地图的初始化,是由CreateInitialMapMonocular函数完成的,本文基于该函数的流程出发,目的是为了结合代码流程,把单目初始化的上下两篇的知识点和ORB-SLAM3整个系统的知识点串联起来,系统化零碎的知识...
学习ORB-SLAM3单目视觉SLAM中,发现有很多知识点需要展开和深入,同时又需要对系统有整体的认知,为了强化记忆,记录该系列笔记,为自己图方便,也希望对大家有所启发。 因为知识有限,因此先记录初始化过程中的重要节点,并非全部细节,如果需要看代码的话,建议直接去看作者的源代码ORB_SLAM3(https://github.com/UZ-SLAMLa...
接下来,就是完成初始化过程的最后一步:地图的初始化,是由CreateInitialMapMonocular函数完成的,本文基于该函数的流程出发,目的是为了结合代码流程,把单目初始化的上下两篇的知识点和ORB-SLAM3整个系统的知识点串联起来,系统化零碎的知识,告诉你平时学到的各个小知识应用在SLAM系统中的什么位置,达到快速高效学习的效果。
本文承接ORB-SLAM3 细读单目初始化过程(上),ORBSLAM3单目视觉有很多知识点需要展开和深入,初始化过程是必然要经历的,而网上资料不够系统,因此本文主旨是从代码实现出发,把初始化过程系统化,建立起知识树,以把零碎的知识点串联起来,方便快速学习提升自己。注意,本文虽然从代码出发,但并非讲全部代码细节,如有需要建议...
一. 通过对极约束并行计算F和H矩阵初始化 VO初始化目的是为了获得准确的帧间相对位姿,并通过三角化恢复出初始地图点。初始化方法要求适用于不同的场景(特别是平面场景),并且不要进行人为的干涉,例如选取视差大(large parallax)的场景(视差大代表相机移动会带来明显的图像变化,通常距离相机距离越远,距离相机光轴越近...
请阅读本文之前最好把ORB-SLAM3的单目初始化过程再过一遍(ORB-SLAM3 细读单目初始化过程(上)、超详细解读ORB-SLAM3单目初始化(下篇)),以提高学习效率。单目初始化过程中最重要的是两个函数实现,分别是构建帧(Frame)和初始化(Track)。接下来,就是完成初始化过程的最后一步:地图的初始化,是由CreateInitialMapMono...
TrackMonocular是ORBSLAM单目视觉SLAM的追踪器接口,因此从这里入手。其中GrabImageMonocular下⾯有2个主要的函数:Frame::Frame()和Tracking::Track()。我会按照下⾯的框架流程来分解单⽬初始化过程,以便对整个流程有⽐较清晰的认识。 1.Frame::Frame() ...
ORB-SLAM3 细读单目初始化过程(上) ,ORBSLAM3单目视觉有很多知识点需要展开和深入,初始化过程是必然要经历的,而网上资料不够系统,因此本文主旨是从代码实现出发,把初始化过程系统化,建立起知识树,以把零碎的知识点串联起来,方便快速学习提升自己。注意,本文虽然从代码出发,但并非讲全部代码细节,如有需要建议直接看...
本文承接ORB-SLAM3 细读单目初始化过程(上),ORBSLAM3单目视觉有很多知识点需要展开和深入,初始化过程是必然要经历的,而网上资料不够系统,因此本文主旨是从代码实现出发,把初始化过程系统化,建立起知识树,以把零碎的知识点串联起来,方便快速学习提升自己。注意,本文虽...