闭环检测部分与ORB-Atlas的基本相同。 参考文献 [1]. ORB-SLAM: a Versatile and Accurate Monocular SLAM System [2]. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras [3]. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM...
本文的第二个创新点是根据改进recall的新的重定位模块来构建的混合地图,因为这个模块他可以让ORB-SLAM3在特征不是很好的场景中长期运行:当里程计失败的时候,系统会重新构建地图并将这个地图和原来构建的地图对齐。和那些仅利用最新的几帧数据的里程计相比,ORB-SLAM3是第一个能够在所有算法阶段重用所有先前信息的系统。
在ORB的原始论文:ORB: an efficient alternative to SIFT or SURF已经考虑到了特征点提取的多尺度问题,使用图像金字塔的方式对多个尺度的图像进行ORB特征提取。但是在ORB-SLAM系列中,为了让特征点分散更加均匀,ORB-SLAM的作者根据OpenCV的实现进行了修改,让特征点尽可能地分散到图片的整个区域而不是只有在纹理明显的区...
二、 ORB-SLAM2 ORB-SLAM2与1相比,主要的改动有:BoW字典有所变化,以及在回环检测Essential Graph优化后,新增了一个全局的BA进一步优化。总得来说,在地图部分,和1相比就是多了一个全局优化而已。具体可参考ORB-SLAM2的github下的issue(https://github.com/raulmur/ORB_SLAM2/issues/333) 三、ORB-Atlas Atlas...
ORB-SLAM解决重定位是用的Epnp;但是他是基于一个标定好的针孔相机模型的,为了继续我们的工作,我们采用独立于相机的ML-pnp算法可以完全从相机模型中解耦,因为他利用投影光线作为输入。相机模型只需要提供一个从像素传递到投影光线的反投影函数,以便能够使用重定位。
一、ORB-SLAM1 首先介绍ORB-SLAM1中的一些基本概念。 1.基本概念 ·共视图 Covisibility Graph: 共视图是一个加权无向图,图中每个节点是相机的位姿,如果两个位姿的关键帧拍摄到的相同关键点的数量达到一定值(论文设定为至少15个),则认为两个关键帧具有共视关系。此时两个节点之间便生成了一条边,边的权重与共视...
单目SLAM系统有7个自由度,3个平移,3个旋转,1个尺度因子 [6]。因此,闭合回环,我们需要计算从当前关键帧Ki到回环关键帧Kl的相似变换,以获得回环的累积误差。计算相似变换也可以作为回环的几何验证。 我们先计算ORB特征关联的当前关键帧的地图云点和回环候选关键帧的对应关系,具体步骤如第3部分E节所示。此时,对每个...
一、ORB-SLAM1 首先介绍ORB-SLAM1中的一些基本概念。 1.基本概念 ·共视图 Covisibility Graph: 共视图是一个加权无向图,图中每个节点是相机的位姿,如果两个位姿的关键帧拍摄到的相同关键点的数量达到一定值(论文设定为至少15个),则认为两个关键帧具有共视关系。此时两个节点之间便生成了一条边,边的权重与共视...
ORB-SLAM解决重定位是用的Epnp;但是他是基于一个标定好的针孔相机模型的,为了继续我们的工作,我们采用独立于相机的ML-pnp算法可以完全从相机模型中解耦,因为他利用投影光线作为输入。相机模型只需要提供一个从像素传递到投影光线的反投影函数,以便能够使用重定位。
ORB-SLAM解决重定位是用的Epnp;但是他是基于一个标定好的针孔相机模型的,为了继续我们的工作,我们采用独立于相机的ML-pnp算法可以完全从相机模型中解耦,因为他利用投影光线作为输入。相机模型只需要提供一个从像素传递到投影光线的反投影函数,以便能够使用重定位。