本文的第二个创新点是根据改进recall的新的重定位模块来构建的混合地图,因为这个模块他可以让ORB-SLAM3在特征不是很好的场景中长期运行:当里程计失败的时候,系统会重新构建地图并将这个地图和原来构建的地图对齐。和那些仅利用最新的几帧数据的里程计相比,ORB-SLAM3是第一个能够在所有算法阶段重用所有先前信息的系统。
室内和室外环境中都能稳定地运行,并且比以前的方法精确2到5倍.第二个主要的创新是一个多地图系统,它依赖于一种新的位置识别方法和改进的召回.多亏了它,ORB-SLAM3能够在长时间的不良视觉信息下生存:当它丢失时,它会启动一个新的地图,当重新访问地图区域...
5、地图(Map),地图管理的类里包含了关键帧集合(mspKeyFrames)和地图点的集合(mspMapPoints)[2],在orbslam3中没有专门的类用来抽象局部地图,局部地图的相关数据的维护和更新体现在tracking模块(代码见tracking.cc)的两个相关的成员变量:局部关键帧(mvpLocalKeyFrames)和局部地图点(mvpLocalMapPoints)中,通过TrackLocal...
本文介绍了ORB-SLAM3,这是第一个能够使用针孔和鱼眼镜头模型通过单目、立体和RGB-D相机执行视觉、视觉惯性和多地图SLAM的系统。 第一个主要创新是基于特征的紧密集成的视觉惯性SLAM系统,它完全依赖于最大后验(MAP)估计,即使在IMU初始化阶段也是如此。结果是一个系统在大大小小的室内和室外环境中实时稳健运行,并且比...
Sim3Solver:Horn’s 四元数方法(Horn’s Method)是一种用于最优对齐两个三维点集的方法,广泛用于位姿估计、点云配准、结构光扫描等场景。它通过最小化均方误差(Least-Squares Error),利用四元数来高效求解旋转矩阵R,在ORB-SLAM3系统中,其主要用于(1)、回环匹配关键帧和当前关键帧的变换求解;求解的参数有旋转、...
ORB-SLAM3实现了多种传感器配置下的同步定位(相机位姿的实时跟踪定位)和建图(基于稀疏三维地图点的三维地图构建)功能,且通过Atlas类实现了多地图集(跟踪失效时会重新创新新地图)的管理,以及包括地图的回环检测和矫正以及地图的合并。整个系统大体由单帧实时跟踪模块(Tracking.cc),局部建图模块(LocalMapping.cc)和回环...
ORB-SLAM3 是第一个同时具备纯视觉(visual)数据处理、视觉+惯性(visual-inertial)数据处理、和构建多地图(multi-map)功能,支持单目、双目以及 RGB-D 相机,同时支持针孔相机、鱼眼相机模型的 SLAM 系统。 最大后验概率估计(Maximum-a-Posteriori,MAP...
ORB-SLAM3是一种基于单目相机的同时定位与地图构建(SLAM)系统,它使用了惯性测量单元(IMU)来提高定位的精度和鲁棒性。在ORB-SLAM3中,IMU融合方法起着重要的作用。 IMU(Inertial Measurement Unit)是一种集成了加速度计和陀螺仪的传感器,用于测量物体的线性加速度和角速度。IMU可以提供相对于惯性空间的运动信息,但是由...
0. 简介 那篇文章中提到了ORB-SLAM3是一个支持视觉、视觉加惯导、混合地图的SLAM系统,可以在单目,双目和RGB-D相机上利用针孔或者鱼眼模型运行。 与ORB-SLAM2相比,ORB-SLAM3在处理大视差和长时间未观测到的场景时效果更好。它还提供了更准确的帧间运动估计和更快的处理速度。