在本章中, 学习如何使用Meanshift和Camshift算法来跟踪视频中的对象。 Meanshift 均值移动理解起来可以相对简单一些。假设你有一组点。(它可以是像直方图反向投影这样的像素分布)。你有一个小窗口(可能是一个圆圈),你必须将该窗口移动到最大像素密度(或最大点数)的区域。如下图所示: 初始窗口以蓝色圆圈显示,名称为...
由于分割后同一类像素点具有相同像素值,因此Mean-Shift算法的输出结果是一个颜色渐变、纹理平缓的图像。 OpenCV 4中提供了实现Mean-Shift算法分割图像的pyrMeanShiftFiltering()函数,该函数的函数原型在代码清单8-23中给出。 代码语言:javascript 复制 代码清单8-23pyrMeanShiftFiltering()函数原型voidcv::pyrMeanShiftFilt...
1、API cv2.meanShift(probImage,window,criteria) 2、参数 problmage:ROI区域,即目标的直方图的反向投影入 window:初始搜索窗口,就是定义ROI的rect criteria:确定窗口搜索停止的准则,主要有迭代次数达到设置的最大值,窗口中心的漂移值大于某个设定的限值等。 3、实现Meanshift的主要流程是: ① 读取视频文件:CV2.vid...
CamShift算法全称是“Continuously Adaptive Mean-Shift”(连续自适应MeanShift算法),是对MeanShift算法的改进算法,可随着跟踪目标的大小变化实时调整搜索窗口的大小,具有较好的跟踪效果。 Camshift算法首先应用meanshift,一旦meanshift收敛,它就会更新窗口的大小,还计算最佳拟合椭圆的方向,从而根据目标的位置和大小更新搜索窗口。...
meanshift 跟踪使用一个固定的区域去迭代被跟踪物体中心,当视场大小发生改变时,meanshift 跟踪到物体尺寸没有发生改变,同时也会因为跟踪尺寸与物体成像尺寸不一致而产生跟踪误差,因此引入camshift。 Continuously Adaptive Meanshift 使用反向投影图的零阶矩作为视场大小评估依据,使用一阶矩与二阶矩获得被跟踪物体位置与朝向,...
萌新的opencv入门2--meanshift物体追踪 1 Meanshift原理 meanshift算法,其本质还是一种梯度下降法求最值方法。我认为可以这样表述,我们在取一个点(比如区域的某个角)作为区域的代表,将区域与目标相似程度数值化(或者机器学习中,将此点一定大小范围内匹配点的数目),作为这点的值,这样在图像上就可以形成坐标的xy的...
OpenCV图像处理-图像分割-MeanShift 简介:1. 基本概念MeanShift严格说来并不是用来对图像进行分割的,而是在色彩层面的平滑滤波。它会中和色彩分布相近的颜色,平滑色彩细节,侵蚀掉面积较小的的颜色区域,它以图像上任意一点P为圆心,半径为sp,色彩幅值为sr进行不断地迭代。
为了解决这个问题,我们可以在meanshift的基础上,让他自适应跟踪物体的大小来调整矩形框的大小,这就是Camshift。CamShift算法的全称是”Continuously Adaptive Mean-SHIFT”,称为连续自适应的meanshift算法,算法部分不变,只是能让他能够自我适应跟踪物体大小而已。
OpenCV中的Meanshift 要在OpenCV中使用meanshift,首先我们需要设置目标,找到其直方图,以便我们可以将目标反投影到每帧上以计算均值偏移。我们还需要提供窗口的初始位置。对于直方图,此处仅考虑色相。另外,为避免由于光线不足而产生错误的值,可以使用cv.inRange()函数丢弃光线不足的值。import numpy as npimport cv2 ...
2.1 MeanShift 代码语言:javascript 复制 # 使用MeanShift均移和 CAMshift(Continuously Adaptive Meanshift)持续自适应均移以寻找和追踪对象 # CAMshift 是 MeanShift的优化,它会持续性的自动调整窗口的大小,并且计算最佳拟合椭圆的方向。它再次应用具有新缩放搜索窗口和先前窗口位置的均值变换,直到达到所需的精度;importnump...