K 均值聚类是一种将输入数据划分为 k 个簇的简单的聚类算法,该算法不断提取当前分类的中心点(也称为质心或重心),并最终在分类稳定时完成聚类。从本质上说,K 均值聚类是一种迭代算法。 K均值聚类算法(K-means)的基本步骤如下: 随机选取 k 个点作为分类的中心点。 将每个数据点放到距离它最近的中心点所在的类...
//使用KMeans /* labels中放的是执行kmeans算法后sample中簇的索引,KMEANS_PP_CENTERS 算法决定簇的初始中心,否则就是采用随机值的方法决定初始中心。 如果flags是CV_KMEANS_USE_INITIAL_LABELS,则需要初始化labels,就是初始指定点的分类。 */ kmeans(points, numCluster, labels, TermCriteria(TermCriteria::EPS ...
K-means算法的工作原理:算法首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中心的距离,把样本归到离它最近的那个聚类中心所在的类。计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数 已经收敛。本算法的一个特点...
因此,通过随机生成获得z数据,它是一个大小为(50, 1)的数组,值的范围是0到255,将z重塑为列向量后画出以下图像: 现在应用OpenCV的KMeans函数。在此之前,需要指定停止标准,本次设置的标准是迭代运行10次算法或达到 精度时,就停止算法并返回结果。 # define cirteria = (type, max_iter=10, epsilon=1.0) cert...
目标 了解如何在OpenCV中使用cv.kmeans()函数进行数据聚类 理解参数 输入参数 1. sample :它应该是 np.float32 数据类型,并且每个功能都应该放在单个列中。 2. nclusters(K) :结束条件所需的簇数 3. criteria :这是迭代终止条件。满足此条件
Kmeans算法一般步骤如下: 1、输入样本数据集合和用户指定的类别数K。 2、分配类别初始化中心点的位置(随机或指定)。 3、将每个样本点放入离它最近的聚类中心所在的集合。 4、移动聚类中心点到它所在集合的中心。 5、转到第3步,直到满足给定的收敛条件。
在OpenCV中,K均值聚类(K-means Clustering)算法的实现包含在ml模块中。K均值聚类是一种无监督学习算法,用于将数据集划分为K个类别。 K均值聚类的原理很简单,它首先随机选择K个初始聚类中心,然后迭代地执行以下步骤:将每个数据点分配给离它最近的聚类中心所属的类别,并更新聚类中心为属于该类别的数据点的均值。重复...
OpenCV 提供了cv2.kmeans( samples, nclusters(K), criteria, attempts, flags ) 函数用于颜色聚类。 1.样本:应为np.float32数据类型,并且每个特征应放在单列中。 2. nclusters(K):最后需要的簇数 3. criteria:迭代终止准则。当满足该标准时,算法迭代停止。实际上,它应该是一个包含 3 个参数的元组。它们是...
3.centers: 这是聚类中心的数组 现在我们用三个例子看看怎么应用K-Means算法 1.只有一个特征的数据 你有一个只有一个特征或者一个维度的数据集,比如,我们你只能用人的身高来决定T恤的尺寸。 所以我们创建数据并用Matplotlib绘制: import numpy as np