K-Means 聚类是一种无监督机器学习算法,旨在将N 个观测值划分为K 个聚类,其中每个观测值都属于具有最近均值的聚类。集群是指由于某些相似性而聚合在一起的数据点的集合。对于图像分割,这里的簇是不同的图像颜色。 我们使用的环境是pip install opencv-python numpy matplotlib 选择的图片是我们学校毕业照的图片,放心...
首先我们通过OpenCV中的随机数产生器RNG,生成一些均匀分布的随机点,这些点的位置对应一副图像中的像素位置,然后使用kmeans算法对这些随机点进行分类,并计算出分类簇的中心点。 随机产生的簇的数量是2到5之间的值,采样点的数量范围是1-1000,一维矩阵centers存放kmeans算法结束后,各个簇的中心位置。 //簇的数量 int ...
首先我们通过OpenCV中的随机数产生器RNG,生成一些均匀分布的随机点,这些点的位置对应一副图像中的像素位置,然后使用kmeans算法对这些随机点进行分类,并计算出分类簇的中心点。 随机产生的簇的数量是2到5之间的值,采样点的数量范围是1-1000,一维矩阵centers存放kmeans算法结束后,各个簇的中心位置。 //簇的数量 int ...