1、勾选编译项 BUlLD_opencv_python_bindings_generator BUlLD_opencv_python_tests 2、检查python路径信息 13.5 在搜索框输入 WITH_CUDA 勾选编译项 WITH CUDA 在搜索框输入 OPENCV_DNN 勾选BUILD opencv dnn 在搜索框输入 OPENCV_DNN_CU 勾选OPENCV_DNN CUDA 在搜索框输入 ENABLE_FAST_MATH 勾选ENABLE_FAST_MA...
opencv: 4.9.0 准备: 复制build目录下面的install到目标路径,例如:d:\opencv-cuda490\install 复制python目录下Lib\site-packages\cv2到目标路径,例如:d:\3.10.11-embed-opencv-cuda\Lib\site-packages 修改: 假如cv2的目标路径: d:\3.10.11-embed-opencv-cuda\Lib\site-packages\cv2 1.打开目录下的config.py...
CUDA Toolkit Archivedeveloper.nvidia.com/cuda-toolkit-archive Visual Studio 2019:安装时勾选 C++ 桌面开发(包含MSVC编译器)。[2] CMake:下载最新版并安装。[3] Python 3.x:可选,用于部分脚本支持。 Git:可选,用于下载源码。 1.2 安装依赖库(可选) FFmpeg:用于视频编解码支持。 Intel TBB:多线程加速...
进入:https://developer.nvidia.com/cuda-toolkit-archive 点击CUDA Toolkit10.2后,如图选择: CUDA官网会给出下载和安装方法,根据官网提示,执行: wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-r...
opencv cuda 编译 python 组件 用cmake-gui 配置 WITH_CUDA 时出现这个错误提示。 AI检测代码解析 CMake Error at modules/core/CMakeLists.txt:40 (message): CUDA: OpenCV requires enabled 'cudev' module from 'opencv_contrib' repository: https:///opencv/opencv_contrib...
勾选和 CUDA 相关选项 取消选择 java 和 python 的编译选项(个人不需要) 勾选nonfree 的编译选项 取消TEST 相关选项加快编译速度 勾选BUILD_opencv_world 最终只生成一个动态链接库方便使用 在OPENCV_EXTRA_MODULES_PATH 中填入 OpenCV_contrib 解压文件夹 modules 的路径 ...
2.3.2 解决CUDA版本异常 2.4 编译项目 3. Visual Studio 编译项目 4. 项目测试 5. 总结 OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。项目源码由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言...
如下图所示,在运行后,输出为1,本机设备只存在一个显卡,所以索命该项目已经编译好了。 5. 总结 在本文中,我们实现了OpenCV源码编译,并结合本机安装的CUDA版本,实现了CUDA版本的OpenCV编译,并实现了Python API 以及C++ API 的使用。后续我们将会结合所编译的库进行项目开发以及与普通版本进行对比。
要构建Python可用的支持CUDA的OpenCV,你可以按照以下步骤进行操作: 1. 安装CUDA Toolkit并配置环境变量 首先,你需要确保你的系统已经安装了CUDA Toolkit。你可以从NVIDIA的官方网站下载对应版本的CUDA Toolkit,并按照安装向导完成安装。安装完成后,确保CUDA的bin目录(如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA...