很明显随着子载波数量的增加,OFDM-BPSK-LFM的一体化信号雷达模糊函数越差,因此其雷达探测能力会降低。 四、总结 本文基于OFDM-LFM 信号,采用BPSK通信调制方法对通信信息进行调制,以实现雷达通信一体化波形的设计。基于OFDM-LFM 的BPSK 一体化信号误码率较低,能够满足通信条件,模糊函数较差,因此很难满足复杂的雷达探测...
很明显随着子载波数量的增加,OFDM-BPSK-LFM的一体化信号雷达模糊函数越差,因此其雷达探测能力会降低。 四、总结 本文基于OFDM-LFM 信号,采用BPSK通信调制方法对通信信息进行调制,以实现雷达通信一体化波形的设计。基于OFDM-LFM 的BPSK 一体化信号误码率较低,能够满足通信条件,模糊函数较差,因此很难满足复杂的雷达探测...
图4-图6分别是OFDMMSK-LFM的模糊函数三维视图、速度切片与距离切片,看过之前OFDM-16QAM-LFM与OFDM-BPSK-LFM两篇文章的同学应该能够发现MSK调制令一体化信号的模糊函数更趋于图钉形状,具有较低的旁瓣,因此其雷达探测能力得到很好的保证,而OFDM-MSK-LFM信号的通信误码率取决于MSK调制,在文末参考文献中有相应的介绍,...
图4-图6分别是OFDMMSK-LFM的模糊函数三维视图、速度切片与距离切片,看过之前OFDM-16QAM-LFM与OFDM-BPSK-LFM两篇文章的同学应该能够发现MSK调制令一体化信号的模糊函数更趋于图钉形状,具有较低的旁瓣,因此其雷达探测能力得到很好的保证,而OFDM-MSK-LFM信号的通信误码率取决于MSK调制,在文末参考文献中有相应的介绍,...
随后简要介绍了线性调频信号,分析了其模糊函数性能,提出采用BPSK,MSK和16QAM调制通信信息到OFDM-LFM载波上,从而实现雷达探测和通信传输的功能,分析对比了设计的三种一体化信号的模糊函数和误码率;最后提出在MIMO雷达上采用循环移位的OFDM-LFM信号代表通信信息,从而设计出雷达通信一体化信号,分析了该波形的模糊函数和误码...
本文采用模糊函数作为评价标准,从距离和速度两方面分析和比较了太赫兹频段正交频分复用-16阶正交幅相调制-线调频(OFDM-16QAM-LFM)、正交频分复用-二进制相移键控-线调频(OFDM-BPSK-LFM)、正交频分复用-最小相移键控-线调频(OFDM-MSK-LFM)3种OFDM一体化波形的雷达探测性能。数值仿真结果表明,OFDM-16QAM-LFM波形...
对于MPSK与QAM信号,由于不能确定其复信号的密度,所以其归一化峰度和六阶混合矩以实际测量为准。对于采样率为12 000 Hz、中心频率2 400 Hz、码元速率为2 400 Bd的BPSK、QPSK、8PSK、16QAM、32QAM信号,对2 048点进行统计平均,其统计特征如表3所示。
该数据集包含 6 种类型的 OFDM 调制:BPSK、QPSK、8PSK、16QAM、64QAM 和 256QAM,信噪比范围为 -10dB 到 20dB,间隔为 2 dB。在特定 SNR 下,每种信号类型都会生成 2000 条数据,数据集总共有 192,000 条数据。在传输信号之前,它分别经过信号处理步骤,例如通道编码、调制、...
(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、...
3.2 OFDM-MSK-LFM模糊函数 图4-图6分别是OFDM-MSK-LFM的模糊函数三维视图、速度切片与距离切片,看过之前OFDM-16QAM-LFM与OFDM-BPSK-LFM两篇文章的同学应该能够发现MSK调制令一体化信号的模糊函数更趋于图钉形状,具有较低的旁瓣,因此其雷达探测能力得到很好的保证,而OFDM-MSK-LFM信号的通信误码率取决于MSK调制,在...