搜了一下大概意思就是我安装的dgl的cuda版本和我自己的cuda版本不匹配,然后一顿搜索以后,又找到了 nvcc --version这个命令,显示出来的cuda版本竟然是9.1 所以,此时的情况是:nvidia-smi和nvcc --version出来的版本不一致,这主要是因为,CUDA有两个主要的API:runtime(运行时) API和driver API。关于这两个具体的区别...
nvcc属于CUDA的编译器,将程序编译成可执行的二进制文件。 nvidia-smi帮助管理和监控NVIDIA GPU设备。 nvcc显示的是CUDA的runtime api, 由CUDA Toolkit installer安装。nvidia-smi显示的是driver api。 pytorch版本选择 在选择pytorch版本的时候,指定的CUDA版本对应的command是cudatoolkit,因此应该选择nvcc -V的版本号。
否则,你可能使用了单独的GPU driver installer来安装GPU dirver,这样就会导致 nvidia-smi 和 nvcc --version 显示的版本不一致了。 通常,driver api的版本能向下兼容runtime api的版本,即nvidia-smi 显示的版本大于nvcc --version 的版本通常不会出现大问题。 多版本CUDA切换 多版本CUDA下载地址 进入以上链接下载指定...
nvcc&nvidia-smi nvcc属于时CUDA的编译器,将程序编译成可执行的二进制文件 nvidia-smi全称是NVIDIA System Management Interface,是一种命令行实用工具,用来帮助管理和监控NVIDIA GPU设备的。 当我们安装一个版本的cuda时,实际上会同时安装runtime api和driver api,前者对应nvcc后者对应nvidia-smi查看到的。个人理解是,...
参考文章:jianshu.com/p/eb5335708 总结就是: nvcc --version 是由CUDA toolkit installer安装的关于runtime api的文件 nvidia-smi是由GPU driver installer安装的,关于driver api的文件 在安装pytorch的时候,选择与nvcc 版本一致的torch sudo ln -s 可以用于添加软链接 ...
nvcc -V显示的CUDA版本与nvidia-smi显示的CUDA版本不一致?,看到这篇文章,大概意思是说CUDA有两种API,一个是驱动API(DriverVersion),依赖NVIDIA驱动,由nvidia-smi查看;另一个是运行API(RuntimeVersion)是软件运行所需要的。一般驱动API版本>=运行API版本即可。
当面对nvcc-v显示的CUDA版本高于nvidia-smi的CUDA版本时,首先明确结论,解决方法通常有以下两点。探究原因之前,需要考虑你的PyTorch版本。值得注意的是,PyTorch自带CUDA支持,不会使用系统预装的CUDA版本。因此,应验证PyTorch的版本是否与系统CUDA版本兼容。以2023年10月25日为例,官方PyTorch默认版本为CUDA...
事情是这样的,我下载了pytorch,然后输入了torch.cuda.is_available()命令,返回false,后面网上查了发现英伟达的驱动版本与cuda的版本不兼容,如下 所以我就去下载高一点版本的cuda(我下的是11.8,下载完后我用nvcc-V的命令,发现cuda的版本确实是11.8,也就是刚刚下载的新版本,如下 可是我用NVIDIA-smi命令再次执行时,返...
首先卸载nvcc 命令:sudo apt-get autoremove nvidia-cuda-toolkit 然后输入nvcc --version 查询版本号,出现提示没有...