condition = np.array([True, False, True, False]) # Create two arrays array_true = np.array([1, 2, 3, 4]) array_false = np.array([5, 6, 7, 8]) result = np.where(condition, array_true, array_false) [1 6 3 8] 以上就是Numpy最经常被使用的函数,希望对你有所帮助。 作者:ali...
y= np.split(x, 3, axis=0)#平均分成三份,不能平均的话则会报错,axis默认为0print(y)#不均等分割 np.array_split()y = np.array_split(x, 4, axis=0)#第0项分割出来的元素最多,剩下的均等分print('不均等分割:',y) y= np.split(x, (3,))#在第3行之前进行切割,切割成2份print(y) y...
double', 'ceil', 'cfloat', 'char', 'character', 'chararray', 'choose', 'clip', 'clongdouble', 'clongfloat', 'column_stack', 'common_type', 'compare_chararrays', 'compat', 'complex', 'complex128', 'complex64', 'complex_', 'complexfloating', 'compress', 'concatenate', 'conj...
arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) # Concatenate the arrays along axis 0 (default) concatenated_arr = np.concatenate((arr1, arr2)) [1 2 3 4 5 6] numpy.split:分割数据,numpy.resize:改变数组的形状和大小。 numpy.vstack:将多个数组垂直堆叠以创建一个新数组。
arr2=np.array([10,20,30])result=arr1+arr2# 广播相加 print(result)在上述例子中,arr2被广播以匹配arr1的形状,然后进行相加操作。这种灵活性使得处理不同形状的数组变得更加容易。1.2 高级索引 NumPy提供了多种高级索引技巧,如布尔索引、整数数组索引和切片索引,可以满足各种复杂的数据选择需求。 99 ...
importnumpyasnp# 创建一维数组a1=np.array([1,2,3,4,5])# 查看数组形状print(a1.shape)# 输出数组print(a1) 从上图可以看出,输出的形状数组不是想象中的(5,1),这代表一维数组只有一个维度,不确定是行的个数是5还是列数为5,我们可以采用reshape函数将其任意变换为行数为5、列数为1的数组,或者行数为...
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) first_column = arr[:,0] print(first_column) # [1, 4, 7] 1. 2. 3. 选择一个二维数组的前两行: arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) ...
Please refer to thesplitdocumentation. The only difference between these functions is thatarray_splitallowsindices_or_sectionsto be an integer that doesnotequally divide the axis. See also split Split array into multiple sub-arrays of equal size. ...
numpy.array_split(ary, indices_or_sections, axis=0) Parameters: Return value: Example: Splitting a NumPy array into equal-sized subarrays using numpy.array_split() >>> import numpy as np >>> a = np.arange(9.0) >>> np.array_split(a, 4) ...
Weeks indices initial [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]Weeks indices after split [array([0, 1, 2, 3, 4], dtype=int64), array([5, 6, 7, 8, 9], dtype=int64), array([10, 11, 12, 13, 14], dtype=int64), array([15, 16, 17, 18, 19],...