importnumpyasnp arr=np.array([2,4,6,8,10])index=np.where(arr==6)print("Index of number 6:",index)index=np.argwhere(arr==6)print("Index of number 6:",index)index=np.where(arr==6)[0][0]print("Index of number 6:",index) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12...
7、遍历数组(3种方法) # Iterate array # Time complexiyt:O(N) # (1)只返回值,(2)(3)还会返回索引,因此取决于题目要求 # (1) for i in a: print(i) # (2) for index, element in enumerate(a): print("Index at", index, "is:", element) # (3) for i in range(0, len(a)): p...
>>>a=np.arange(12)**2# the first 12 square numbers>>>i=np.array([1,1,3,8,5])# an ...
array([5,2,6,2,7,5,6,8,2,9])u = np.unique(a)print(u)u,indices = np.unique(a, return_index = True)print(u, indices)u,indices = np.unique(a,return_inverse = True)print(u, indices)u,indices = np.unique(a,return_counts = True)print(u, indices) 代码语言:javascript 代码...
For a two-dimensional array, using just one index returns the given row which is consistent with the construction of 2D arrays as lists of lists, where the inner lists correspond to the rows of the array. 对于二维数组,只使用一个索引返回给定的行,该行与二维数组作为列表的构造一致,其中内部列表...
row_index=np.array([0,2])result_row=arr[row_index]print(result_bool)print(result_row)2. 常用方法 2.1 统计方法 NumPy提供了丰富的统计方法,如mean、median、sum等,用于计算数组的统计值。 2.2 排序和搜索 NumPy提供了用于数组排序和搜索的方法,如sort、argsort和where。 3. 多维数组的操作 ...
array([7,2,10,2,7,4,9,4,9,8]) np.where(a == b) #> (array([1, 3, 5, 7]),) 如何从numpy数组中提取给定范围内的所有数字? a = np.arange(15) # Method 1 ( & intersect) ( | union) index = np.where((a >= 5) & (a <= 10)) a[index] # Method 2: index = np....
assert_array_almost_equal函数 有时我们需要检查两个数组是否几乎相等。 如果两个数组的指定精度不相等,assert_array_almost_equal函数将引发异常。 该函数检查两个数组的形状是否相同。 然后,将数组的值按元素进行如下比较: |expected - actual| <0.510-decimal ...
y = np.array([1,5,6,8,1,7,3,6,9])# Where y is greater than 5, returns index positionnp.where(y>5)array([2, 3, 5, 7, 8], dtype=int64),)# First will replace the values that match the condition, # second will replace the values that does notnp.where(y>5, "Hit", "...
shape (4, 3, 2) >>> s[3,2,1] # index i + j*4 + k*(3*4) 23 >>> s[0,1,0] 4 >>> s[0,0,1] # the first index advances serially 12 >>> t1 = t[1,2] # partial indices return slices >>> t1 array([20, 21, 22, 23], dtype=uint8) >>> t1.shape (4,) >...