In our next example, we will use the Boolean mask of one array to select the corresponding elements of another array. The new array R contains all the elements of C where the corresponding value of (A<=5) is True. C=np.array([123,188,190,99,77,88,100])A=np.array([4,7,2,8,...
这是本书代码包中boolean_indexing.py文件中该秘籍的完整代码: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 import scipy.misc import matplotlib.pyplot as plt import numpy as np # Load the Lena array lena = scipy.misc.lena() def get_indices(size): arr = np.arange(size) return arr % ...
plt.imshow(lena)#Plot the flipped arrayplt.subplot(222) plt.title('Flipped') plt.axis('off') plt.imshow(lena[:,::-1])#Plot a slice arrayplt.subplot(223) plt.title('Sliced') plt.axis('off') plt.imshow(lena[:lena.shape[0]/2,:lena.shape[1]/2])# Apply a maskmask = lena %2...
importnumpyasnp# create an array of integersarray1 = np.array([1,2,4,9,11,16,18,22,26,31,33,47,51,52])# create a boolean mask using combined logical operatorsboolean_mask = (array1 <10) | (array1 >40)# apply the boolean mask to the arrayresult = array1[boolean_mask]print(r...
问Python/Numpy:为每一行执行相当于不同列的np.allEN本节介绍如何使用布尔掩码,来检查和操作 NumPy ...
[Python] Boolean Or "Mask" Index Arrays filter with numpy,NumPyReference: IndexingIntegerarrayindexingBooleanarrayindexingNote:Theexpression a<mean producesabooleanarray,like:
B = arange(3) B array([0, 1, 2]) exp (B) array([ 1. , 2 7.3890561 ]) sqrt(B) array([ 0. , 1. , 1) C = array([2., -1., 4.]) add(B, C) array([ 2., 0., 6.]) 更多函数all, alltrue, any, apply along axis, argmax, argmin, argsort, average, bincount, ...
Python - How to replace all values in a numpy array with, If your array is a numpy array then you can use the '==' operator on your array to return a boolean array. Then use the astype feature to turn it to zeros and ones. import numpy as np my_array = np.array ( [ [12, ...
3.2. b (boolean) The ‘b‘ represents Boolean values which can either beTrueorFalse. Let’s create an array of Boolean values and print its data type. importnumpyasnp arr=np.array([True,False,True])print(arr.dtype)# Prints 'bool' ...
mask = (np.greater_equal.outer(x, df['Time'].to_numpy()) & np.less.outer(x, (df['Time'] + df['Duration']).to_numpy())).any(1) Then simply y[mask] = 0 使用外积意味着您将以向量化的方式将数组x的所有值与df中行的所有值进行比较。这很快,但在内存方面成本很高。 考虑将处理划分为...