y)# filter out values in `y` that are greater than 8print(masked_y_array)# 👉️ [2 4 6 8 -- --]print(np.ma.compressed(masked_y_array))# 👉️ [2 4 6 8]new_x_array=np.ma.masked_where(np.ma.getmask(masked_y_array),x)# apply the mask of `masked_y_array` to `...
# Generate an arrayof5values from0to10(inclusive)arr=np.linspace(0,10,5)# Print the arrayprint(arr)[0.2.55.7.510.] 1. 2. 3. 4. 5. 6. numpy.range:用间隔的值创建数组。 复制 # Generate an array from0to10(exclusive)withstep size1arr=np.arange(0,10,2)# Print the arrayprint(arr...
# Create a 2D arrayarr= np.array([[3,1,5], [2,4,6]])# Sort the array along the second axis (columns)sorted_arr= np.sort(arr, axis=1)[[1 3 5][2 4 6]] numpy.argsort:返回按升序对数组排序的索引 # Create an arrayarr= np.array([3,1,5,2,4])# Get the indices that wou...
numpy.ma.masked_array:从现有数组和掩码中创建一个掩码数组。 numpy.ma.mask:表示掩码数组中的掩码值。 numpy.ma.masked_invalid:屏蔽数组中无效的(NaN, Inf)元素。 numpy.ma.masked_greate, numpy.ma.masked_less:掩码大于或小于给定值的元素。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 arr = np...
# Create a 1-dimensional array arr = np.array([1, 2, 3, 4, 5, 6]) # Reshape the array to a 2x3 matrix reshaped_arr = np.reshape(arr, (2, 3)) [[1 2 3] [4 5 6]] numpy.transpose:用于排列数组的维度。它返回一个轴调换后的新数组。
废弃PyArray_As1D、PyArray_As2D 废弃np.alen 废弃金融函数 numpy.ma.mask_cols 和numpy.ma.mask_row 的axis 参数已废弃 过时的废弃功能 兼容性说明 numpy.lib.recfunctions.drop_fields 不再返回 None numpy.argmin/argmax/min/max 在数组存在 NaT 的情况下返回 NaT np.can_cast(np.uint64, ...
Go to: NumPy Masked Arrays Exercises Home ↩ NumPy Exercises Home ↩ Previous:Mask values in NumPy array based on Complex condition. Next:Apply Mathematical function to Unmasked elements in NumPy Masked array. Python-Numpy Code Editor:
To mask rows and/or columns of a 2D array that contain masked values, use the np.ma.mask_rowcols() method in Numpy. The function returns a modified version of the input array, masked depending on the value of the axis parameter. Mask whole rows and/or columns of a 2D array that ...
# Create a 1-dimensional array arr = np.array([1, 2, 3, 4, 5, 6]) # Reshape the array to a 2x3 matrix reshaped_arr = np.reshape(arr, (2, 3)) [[1 2 3] [4 5 6]] numpy.transpose:用于排列数组的维度。它返回一个轴调换后的新数组。
numpy.ma.mask_cols和numpy.ma.mask_row的axis参数已弃用此参数一直被忽略。(gh-14996)过期弃用PyArray_As1D和PyArray_As2D已被移除,使用PyArray_AsCArray替代(gh-14036) np.rank已被移除。这在 NumPy 1.10 中已被弃用,并已被np.ndim替代。(gh-14039) expand_dims在1.13.0 版本中废弃的超出范围轴已经过期...