评估种群个体的适应度。 非支配排序是NSGA-II算法的核心步骤之一。其目的是将种群分成若干层次,每一层次的个体都是不被其他层次的个体支配的。 非支配排序 设种群为P,其中包含N个个体。对于种群中的每个个体xi,计算它的支配个体数ni以及被其支配的个体集合Si。 如果对于两个个体xi和xj,满足: ∀k∈{1,2,…,...
nsga-ii算法原理流程 NSGA-II算法流程:初始化种群→计算个体适应度及非支配排序→基于fronts分层并计算拥挤距离→选择父代个体(优先选择fronts较前及拥挤度较小者)→执行遗传操作(交叉、变异)生成子代→合并父代与子代种群→重复非支配排序和选择直到终止条件满足。
NSGA-II,快速非支配排序 多了Sp和np,记录当前解支配的,以及能支配当前解的。 选取出第一层,再对第一层的解遍历,查找被其支配的解,将第一层的该解删除,重新计算支配解;然后逐层计算。 4.总结多目标优化基本流程: (适应度更高=解更优,“优”取决于优化方向) 3.1 算法分析 4.1 算法拓展 算法的优化建议 不...
针对多目标优化问题,可以用一些多目标进化算法(multiobjective evolutionary algorithms (MOEAs))找到多个帕累托最优解(Pareto-optimal),其中NSGA II就是多目标进化算法的一种,相较于经典遗传算法,主要做出三点改进: 1 非支配排序 2 个体拥挤度算子计算 3 精英策略算子选择改进 下面将详细介绍NSGA II算法原理及实现流...
NSGA一II的基本算法流程: (1)首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群; (2)其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以 及个体的拥挤度选取合适的个体组成新...
因为NSGA-II算法是一种遗传算法,所以首先搞清楚遗传算法的流程。 遗传算法流程 一般遗传算法的流程: 种群初始化 计算每个个体的适应度 选择 交叉 变异 根据是否满足解的精度要求和迭代次数来判断是否进行下一轮的遗传进化。 NSGA算法存在的3个问题 O(MN^3)计算时间复杂度(其中M代表目标个数,N代表种群个数) ...
NSGA-II关键算法(步骤) 1.先对M个个体求pareto解。然后得到F1,F2……等这些pareto的集合。 2.把F1的所有个体全部放入N,若N没满,继续放F2,直到有Fk不能全部放入已经放入F1、F2、…、F(k-1)的N(空间)。此时对Fk进行求解。 3.对于Fk中的个体,求出Fk中的每个个体的拥挤距离Lk[i](crowding distance),在fk...
NSGA-II算法 Nondominated Sorting Genetic Algorithm II NSGA-II Fast Nondominated Sorting Approach 为了去确定N个种群中的第一个非支配前沿,每一个解都与其他的解进行比较,判断是否为支配关系。在这个阶段,所有的第一个非支配解被发现。为了去寻找下一个非支配前沿,对第一组非支配解进行折扣,重复上述的步骤。
NSGA-II算法引入了精英策略,达到保留优秀个体淘汰劣等个体的目的。精英策略通过将父代与子代个体混合形成新的群体,扩大了产生下一代个体时的筛选范围。以图所示的例子进行分析,图中P表示父代种群,设其中的个体数量为n,Q表示子代种群,具体步骤如下: (1)将父代种群和子代种群合并形成新的种群。之后对新种群进行非支...