非局部均值(NL-means)是近年来提出的一项新型的去噪技术。该方法充分利用了图像中的冗余信息,在去噪的同时能最大程度地保持图像的细节特征。基本思想是:当前像素的估计值由图像中与它具有相似邻域结构的像素加权平均得到。 理论上,该算法需要在整个图像范围内判断像素间的相似度,也就是说,每处理一个像素点时,都要...
NL-Means和BM3D可以说是目前效果最好的去噪算法,其中BM3D甚至宣称它可以得到迄今为止最高的PSNR。从最终的结果也可以看出来,BM3D的效果确实要好于NL-Means,噪声更少,能够更好地恢复出图像的细节。在效果这一点上BM3D胜。无愧于State-of-the-art这一称号。当然,这里进行测试的样本比较少,可能还不足以完全说明问题。
在使用OpenCV进行图像处理时,一般都使用高斯滤波或是中值滤波进行去噪,原理也是选取像素周围一个小的邻域铂高斯或中值平均取代中心像素。而今天介绍的NlMeans是对整幅图像进行去噪。 实现效果 上图中右边为使用fastNlMeansDenoising去燥后的效果,可以看出来,整张图片的清晰度和原图基本无变化 ,标红框的地方可以看到平滑...
在使用OpenCV进行图像处理时,一般都使用高斯滤波或是中值滤波进行去噪,原理也是选取像素周围一个小的邻域铂高斯或中值平均取代中心像素。而今天介绍的NlMeans是对整幅图像进行去噪。 实现效果 上图中右边为使用fastNlMeansDenoising去燥后的效果,可以看出来,整张图片的清晰度和原图基本无变化 ,标红框的地方可以看到平滑...
NL-Means的全称是:Non-Local Means,直译过来是 非局部平均,该算法使用自然图像中普遍存在的冗余信息来去噪声。与常用的双线性滤波、中值滤波等利用图像局部信息来滤波不同的是,它利用了整幅图像来进行去噪,以…
NL-Means 的全称是:Non-Local Means ,直译过来是⾮局部平均,在2005年由Baudes 提出,该算法使⽤⾃然图像中普遍存在的冗余信息来去噪声。与常⽤的双线性滤波、中值滤波等利⽤图像局部信息来滤波不同的是,它利⽤了整幅图像来进⾏去噪,以图像块为单位在图像中寻找相似区域,再对这些区域求平均,能够...
噪声图 快速NL-means算法去噪图像 使用积分图加速之后,计算耗时减少了好多,不过还是秒级的。然而在实时应用场合中通常要求毫秒级的耗时,因此加速得还不够,下篇文章中我们将介绍在积分图加速得基础上,使用CUDA进一步加速优化该算法,敬请期待~
skimage.restoration.denoise_nl_means(image, patch_size=7, patch_distance=11, h=0.1, multichannel=False, fast_mode=True, sigma=0.0, *, preserve_range=False, channel_axis=None) 对2D-4D 灰度或 RGB 图像执行非局部方法去噪。 参数: image:2D 或 3D ndarray ...
图2 由于 NL-means(非局域化平均值)算法不是用图像中单个像素的灰度值进行 比较,而是对该像素周围的整个灰度的分布状况进行比较,根据灰度分布的相似 性来贡献权值。因此在利用非局部均值去噪的算法后,图像去噪的效果大大提高 了, 并且去噪过程对图片细节的影响比较小, 在强纹理图像去噪中效果更加明显。©...
artificialartifact;NL-meansalgorithm;Kmeansclusterin 0 引言 超声图像去噪是医学超声成像技术_1]的一个至关重要 的问题,其主要目标为消除图像中的speckle噪声,恢复图 像中的结构信息。基于改进的Nlmeans的滤波,通过K均 值聚类算法不仅能抑制斑点噪声,还能保持图像边缘和纹 理细节的信息,能够达到良好的去噪效果。而...