100行的Pytorch代码实现三维重建技术神经辐射场 (NeRF)提起三维重建技术,NeRF是一个绝对绕不过去的名字。这项逆天的技术,一经提出就被众多研究者所重视,对该技术进行深入研究并提出改进已经成为一个热点。不到两年的时间,NeRF及其变种已经成为重建领域的主流。本文通过100行的Pytorch代码实现最初的 NeRF 论文。NeRF...
测试 训练过程完成,NeRF模型就可以用于从任何角度生成图像。测试函数通过使用来自测试图像的射线数据集进行操作,然后使用渲染函数和优化的NeRF模型为这些射线生成图像。 @torch.no_grad()def test(hn, hf, dataset, chunk_size=10, img_index=0, nb...
不到两年的时间,NeRF及其变种已经成为重建领域的主流。本文通过100行的Pytorch代码实现最初的 NeRF 论文。 NeRF全称为Neural Radiance Fields(神经辐射场),是一项利用多目图像重建三维场景的技术。该项目的作者来自于加州大学伯克利分校,Google研究院,以及加州大学圣地亚哥分校。NeRF使用一组多目图作为输入,通过优化一个潜...
提起三维重建技术,NeRF是一个绝对绕不过去的名字。这项逆天的技术,一经提出就被众多研究者所重视,对该技术进行深入研究并提出改进已经成为一个热点。不到两年的时间,NeRF及其变种已经成为重建领域的主流。本文通过100行的Pytorch代码实现最初的 NeRF 论文。 NeRF全称为Neural Radiance Fields(神经辐射场),是一项利用多...
100行Pytorch代码实现三维重建技术神经辐射场 (NeRF) 简介:提起三维重建技术,NeRF是一个绝对绕不过去的名字。这项逆天的技术,一经提出就被众多研究者所重视,对该技术进行深入研究并提出改进已经成为一个热点。不到两年的时间,NeRF及其变种已经成为重建领域的主流。本文通过100行的Pytorch代码实现最初的 NeRF 论文。
测试 渲染 一些训练经验 关于NeRF 论文与代码实现的对比 总结 NeRF 的简单实现与训练 项目地址:github.com/guomc9/simpl 背景介绍 在阅读了 nerf-pytorch 对原始 NeRF 的复现后,希望对 nerf-pytorch 的数据预处理和光线采样的过程进行重新封装和抽象,实现简单且更易读的 NeRF 训练网络 simple-nerf。 如下是 simple...
Pytorch代码实现 渲染 神经辐射场的一个关键组件,是一个可微分渲染,它将由NeRF模型表示的3D表示映射到2D图像。该问题可以表述为一个简单的重构问题 这里的A是可微渲染,x是NeRF模型,b是目标2D图像。 代码如下: defrender_rays(nerf_model, ray_origins, ray_directions, hn=0, hf=0.5, nb_bins=192): ...
Pytorch代码实现 渲染 神经辐射场的一个关键组件,是一个可微分渲染,它将由NeRF模型表示的3D表示映射到2D图像。该问题可以表述为一个简单的重构问题 这里的A是可微渲染,x是NeRF模型,b是目标2D图像。 代码如下: def render_rays(nerf_model, ray_origins, ray_directions, hn=0, hf=0.5, nb_bins=192): ...
虽然 NeRF 用的神经网络 (11 层的 MLP) 本身很小, 但是渲染一个像素需要采集一条光线上的很多点(上百个), 这导致渲染一张图的计算量非常大, 如下图所示: 用 PyTorch 在单张 NVIDIA V100 显卡测试, 渲染 400x400 的图片就需要 6.7s 的时间, 这显然不利于 NeRF 在业界落地 (例如各种 AR/VR 设备, ...
Pytorch代码实现 渲染 神经辐射场的一个关键组件,是一个可微分渲染,它将由NeRF模型表示的3D表示映射到2D图像。该问题可以表述为一个简单的重构问题 这里的A是可微渲染,x是NeRF模型,b是目标2D图像。 代码如下: defrender_rays(nerf_model, ray_origins, ray_directions, hn=0, hf=0.5, nb_bins=192): ...