训练作业的状态运行失败,查看训练作业的日志,存在NCCL的报错,例如NCCL timeout、RuntimeError: NCCL communicator was aborted on rank 7、NCCL WARN Bootstrap : no socket interface found或NCCL INFO Call to con
训练作业的状态“运行失败”,查看训练作业的“日志”,存在NCCL的报错,例如“NCCL timeout”、“RuntimeError: NCCL communicator was aborted on rank 7”、“NCCL WARN Bootstrap : no socket interface found”或“NCCL INFO Call to connect returned Connection refused, retrying”。
NCCL_IB_TIMEOUT 改变量用于控制InfiniBandVerbs超时。取值范围1-22。 超时时间的计算公式为4.096微秒 * 2 ^ timeout,正确的值取决于网络的大小。增加该值可以在非常大的网络上提供帮助,例如,如果NCCL在调用ibv_poll_cq时出现错误12。 使用建议: 在大模型训练任务中设置成最大值22,可以减少不少nccl timeout异常。
Question I practiced custom datasets on official pulled images and code. When using cache training on DDP, NCCL timeout errors occur when the data set is too large.Here is my log: �[34m�[1mtrain: �[0mweights=./yolov5s.pt, cfg=models/yolov5s.yaml, data=data/dky_34label.yaml...
NCCL_IB_TIMEOUT=18 可选1-22,默认值18,2.14版本前默认14。好像我们主要调上个参数(RETRY次数),这个超时时间没怎么调,自己测试看看吧。 NCCL_IB_QPS_PER_CONNECTION=8 默认值1, 不少地方推荐4 NCCL_IB_SPLIT_DATA_ON_QPS=0 默认1 NCCL_BUFFSIZE ...
[-T,--timeout <time in seconds>] [-G,--cudagraph <num graph launches>] [-C,--report_cputime <0/1>] [-a,--average <0/1/2/3> report average iteration time <0=RANK0/1=AVG/2=MIN/3=MAX>] [-R,--local_register <1/0> enable local buffer registration on send/recv buffers ...
--warmup_iters <warmup iteration count> -c,--check <check iteration count> -d,--datatype <nccltype/all> -z,--blocking <0/1> -T,--timeout <time in seconds> -C,--report_cputime <0/1> -R,--local_register <1/0> enable local buffer registration on send/recv buffers (default:...
NCCL_TIMEOUT:调整通信超时时间,适配长时间的大规模分布式训练。 五、应用场景 NCCL是目前PyTorch训练大模型的标准通信方式,因为它专门优化了GPU之间的梯度同步和数据传输。此外,NCCL还广泛应用于高性能计算和人工智能领域的其他分布式训练场景中。 综上所述,英伟达NCCL是一种高性能、可扩展的通信库,专为多GPU和多节点...
# 创建process group的核心 5. pg_options = ProcessGroupNCCL.Options() # Options 包括获取timeout...
When I was pretraining with accelerate CLI like below, some NCCL operations have failed or timed out. I found this solution #314 (comment) But I don't know how to set timeout configure in accelerate CLI. command: CUDA_VISIBLE_DEVICES="0,...