B+树每次查找都必须到叶子节点才能获取数据,而B树不一定,B树可以在非叶子节点上获取数据。因此B+树查找的时间更稳定。 B+树的每一个叶子节点都有指向下一个叶子节点的指针,方便范围查询和全表查询:只需要从第一个叶子节点开始顺着指针一直扫描下去即可,而B树则要对树做中序遍历。 了解了B+树的结构之后,我们对...
在单元素查询的时候,B+树会自顶向下逐层查找节点,最终找到匹配的叶子节点 示例:查找元素3 注意:B+树的查询看起来与B树差不多,但实际上有两点不同: 1、 B+树的中间节点没有卫星数据,所以,同样大小的磁盘页,B+树的磁盘页可以容纳更多的节点数据 即数据量相同的情况下,B+树的结构比B-树更加“矮胖”,因此,...
B+Tree结构 BTree查找算法图 B+Tree查找算法图(在叶子节点上加上双向指针) B*Treee查找算法图(在枝节点上也使用双向指针) 官方图 分类 构建过程 聚簇索引构建过程 作用: 有了聚簇索引,将来插入的数据行,在同一个区内,都会按照ID值得顺序,有序在磁盘存储数据。 MySQL InnoDB 表 通过聚簇索引组织存储数据表。
要介绍B+树索引,就不得不提二叉查找树,平衡二叉树和B树这三种数据结构。B+树就是从他们仨演化来的。二叉查找树 首先,让我们先看一张图 从图中可以看到,我们为user表(用户信息表)建立了一个二叉查找树的索引。图中的圆为二叉查找树的节点,节点中存储了键(key)和数据(data)。键对应user表中的id,数据...
B+树和B-树的主要区别如下:B-树内部节点是保存数据的;而B+树内部节点是不保存数据的,只作索引作用,它的叶子节点才保存数据。B+树相邻的叶子节点之间是通过链表指针连起来的,B-树却不是。查找过程中,B-树在找到具体的数值以后就结束,而B+树则需要通过索引找到叶子结点中的数据才结束B-树中任何一个关键...
B Tree 是一个绝对平衡树,所有的叶子节点在同一高度,如下图所示: 上图为一个2-3树(每个节点存储2个关键字,有3路),多路平衡查找树也就是多叉的意思,从上图中可以看出,每个节点保存的关键字的个数和路数关系为:关键字个数 = 路数 – 1。 假设要从上图中查找id = X的数据,B TREE 搜索过程如下: ...
在MySQL的B+树中查询数据的过程大致如下: 定位根节点:查询从根节点开始,因为根节点通常存储在内存中,不需要额外的磁盘IO。 内部节点遍历:根据查询条件,在内部节点中使用二分查找法找到包含目标数据的子节点,可能需要磁盘IO读取不在内存中的节点。 叶子节点遍历:在叶子节点中使用二分查找或者顺序查找定位到具体的数据...
B-Tree 是一个绝对平衡树,所有的叶子节点在同一高度;每个节点保存关键字的个数和路数的关系为:关键字个数 = 路数 - 1 假设要从上图中查找id = X的数据,B-TREE 搜索过程如下: 1、取出根磁盘块,加载17和35两个关键字。 2、如果X等于17,则命中;如果X小于17走P1;如果17 < X < 35走P2;如果X = 35,...
BTree又叫多路平衡查找树,一颗m叉的BTree特性如下:树中每个节点最多包含m个孩子。除根节点与叶子节点外...
1.6多路平衡查找树(B-Tree) 看下B-Tree这种多路平衡树的特点,m 阶 B-Tree 满足以下条件: 每个节点最多拥有 m 个子树。 根节点至少有2个子树。 分支节点至少拥有 m/2 颗子树(除根节点和叶子节点外都是分支节点)。 所有叶子节点都在同一层、每个节点最多可以有 m-1 个 key,并且以升序排列。