【生物医学PubMed多标签分类数据集】:https://www.kaggle.com/datasets/owaiskhan9654/pubmed-multilab...
使用来自Kaggle的数据集(在笔记本中提供链接)。不要忘记修改代码,以便为包含数据的文件设置正确的路径。 参考文献: medium.com/analytics-vi colab.research.google.com 中文: github.com/murray-z/mul github.com/hellonlp/cla 英文: GitHub - dtolk/multilabel-BERT: Multi-label text classification using BERT...
label_cols = ["toxic","severe_toxic","obscene","threat","insult","identity_hate"] 终于可以正式读取数据了。 databunch = BertDataBunch(DATA_PATH, LABEL_PATH, tokenizer, train_file='train.csv', val_file='valid.csv', test_data='test.csv', label_file="labels.csv", text_col="comment_...
先来解释一下,什么叫做多标签(multi-label)文本分类问题。 这里咱们结合一个 Kaggle 上的竞赛实例。 竞赛的名字叫做:恶毒评论分类挑战(Toxic Comment Classification Challenge),链接在这里。 这个竞赛的数据,取自真实的网络评论。 除了序号和原始文本以外,每行数据都包含了6个维度的标注,分别是: toxic(恶毒) severe_...
Multi-label-Binarizer 然而,将"San Francisco Crime Classification"视为多标签分类问题的话,更令人头疼的是,最后预测出的结果应该是类似samplesubmission图中"Greek Media Monitoring Multilabel Classification",一个Id对应预测出的1个(或多个)犯罪类型标签。然而Kaggle要求提交的结果是(884262, 40)的csv文件,因此按多...
Multilabel Classification with Scikit-Learn This tutorial will use the publicly availableBiomedical PubMed Multilabel Classification datasetfrom Kaggle. The dataset would contain various features, but we would only use the abstractText feature with their MeSH classification (A: Anatomy, B: Organism, C...
文章地址:https://towardsdatascience.com/fastai-multi-label-image-classification-8034be646e95 文章所涉及的代码:https://github.com/TannerGilbert/Tutorials/blob/master/FastAI/%20Multi-label%20prediction%20with%20Planet%20Amazon%20dataset.ipynb
本文所使用的的多标签数据集来自于kaggle比赛(toxic-comment-classification) 具体示例如下: 标签描述: 上面有2句示例,第一行分别对应(id,text,labels),其中labels通过类似于one-hot的方式进行了转换,这里就变成了'1,1,1,0,1,0',比对标签文件中标签的顺序,表示该文本对应的标签为'toxic,severe_toxic,obscene,in...
本文所使用的的多标签数据集来自于kaggle比赛(toxic-comment-classification) 具体示例如下: 标签描述: 上面有2句示例,第一行分别对应(id,text,labels),其中labels通过类似于one-hot的方式进行了转换,这里就变成了'1,1,1,0,1,0',比对标签文件中标签的顺序,表示该文本对应的标签为'toxic,severe_toxic,obscene,in...
Table 2. Comparison of multi-label text classification approaches. 3. Proposed Methodology In the proposed work, the following stages are conducted: data collection, preprocessing, aspect/feature extraction, representation of word2vec, and implementation of the swarm ensembler, as depicted in Figure...