multi-hop question generationhierarchical encoding-decodingsyntactic knowledgeNeural auto-regressive sequence-to-sequence models have been dominant in text generation tasks, especially the question generation task. However, neural generation models suffer from the global and local semantic semantic drift ...
论文地址:Unsupervised Multi-hop Question Answering by Question Generation。 论文代码:GitHub 0. Abstract 这篇文章研究的是无监督学习进行多跳问题生成,从而实现问答。文章提出了一种叫做 MGA-QG 的框架,能够从文本中或文本和表格中选择和生成相关信息,随后集成这些信息,构建多跳问答数据集(文章构建的是两跳)。只...
http://bing.comStronger Transformers for Neural Multi-Hop Question Generation字幕版之后会放出,敬请持续关注欢迎加入人工智能机器学习群:556910946,公众号: AI基地,会有视频,资料放送。公众号中输入视频地址或视频ID就可以自助查询对应的字幕版本, 视频播放量 39
MHQG: Multi-hop Question Generation from Knowledge Graphs Source code and dataset for our paper "Difficulty-controllable Multi-hop Question Generation From Knowledge Graphs" accepted at ISWC 2019. Some instructions to run the code: Download pre-trained embeddings from here (http://139.129.163.161/in...
原文链接: Knowledge Graphs & LLMs: Multi-Hop Question Answering回答一个问题往往需要把问题切割成多个子问题,所以本质上回答这类问题就是一个multi-hop question-answering task. 上面图中只是首先chunk…
multi-hopreasoning阅读理解,通过强化学习决定hop步数。 训练技巧:一般的baseline方法采用的是全局baseline,但是不同输入的hop步数不同,采用全局baseline没有区分。本文采用Constrastive Reward,对每个输入单独计算baseline,提高训练速度。 Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embed...
machine-learningchatbotartificial-intelligenceindexifyragmulti-hop-reasoningopenaiapimulti-hop-question-answeringretrieval-augmented-generationdspy-aimult-hop-rag UpdatedJul 31, 2024 Jupyter Notebook [ACL'2024 Findings] "Understanding and Patching Compositional Reasoning in LLMs" ...
【论文阅读】DDRQA: Dynamic Document Reranking for Open-domain Multi-hop Question Answering,程序员大本营,技术文章内容聚合第一站。
paper:Query Graph Generation for Answering Multi-hop Complex Questions from Knowledge Basescode:lanyunshi/Multi-hopComplexKBQA 注:文末有【深度学习自然语言处理】大群和【人机对话】小群目前解决复杂KBQA(Knowledge Base Question Answering)的难点主要在于:问题带限制以及问题里包含有多个关系。这篇文章提出了一个...
Retrieval-Augmented Generation (RAG) is a crucial method for mitigating hallucinations in Large Language Models (LLMs) and integrating external knowledge into their responses. Existing RAG methods typically employ query rewriting to clarify the user intent and manage multi-hop logic, while using hybrid...