1,均方误差 均方误差(MSE)的定义如下, 2,均方根误差 均方根误差(RMSE)是回归模型的典型指标,用于指示模型在预测中会产生多大的误差,对于较大的误差,权重较高。 y是实际值,而y~ 是预测值, RMSE越小越好。 3,平均绝对误差 平均绝对误差(MAE)用来衡量预测值与真实值之间的平均绝对误差,MAE越小表示模型越好,其...
1,均方误差 均方误差(MSE)的定义如下, 2,均方根误差 均方根误差(RMSE)是回归模型的典型指标,用于指示模型在预测中会产生多大的误差,对于较大的误差,权重较高。 y是实际值,而y~ 是预测值, RMSE越小越好。 3,平均绝对误差 平均绝对误差(MAE)用来衡量预测值与真实值之间的平均绝对误差,MAE越小表示模型越好,其...
1,均方误差 均方误差(MSE)的定义如下, 2,均方根误差 均方根误差(RMSE)是回归模型的典型指标,用于指示模型在预测中会产生多大的误差,对于较大的误差,权重较高。 y是实际值,而y~ 是预测值, RMSE越小越好。 3,平均绝对误差 平均绝对误差(MAE)用来衡量预测值与真实值之间的平均绝对误差,MAE越小表示模型越好,其...
多元线性回归MLR多变量预测模型,多变量输入结构,可以拟合出方程,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高,方便学习和替换数据。代码参考:https://mbd.pub/o/bread/Y56cm5px 多元线性回归MLR https://mbd.pub/o/bread/Y52bl5tp 逻辑回归(logistic) https://mbd.pub/o/bread/Y52VlJxt PCA-PLS...
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared ①RMSE(RootMeanSquareError)均方根误差衡量观测值与真实值之间的偏差。常用来作为机器学习模型预测结果衡量的标准。 ②MSE(MeanSquareError)均方误差MSE是真实值与预测值的差值的平方然后求和平均。通过平方的形式便于求导,所以常被用作...
遗传算法(GA)优化核极限学习机回归,GA-KELM回归预测,多变量输入模型。评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
基于支持向量机SVM的数据回归预测,SVM回归预测,多变量输入模型。评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
在回归任务(对连续值的预测)中,常见的评估指标(Metric)有:平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、均方根误差(Root Mean Square Error,RMSE)和平均绝对百分比误差(Mean Absolute Percentage Error,MAPE),其中用得最为广泛的就是MAE和MSE。下面依次来进行一个大致的介绍,同时对于...
基于分位数随机森林时间序列区间预测,QRF时间序列区间预测预测。评价指标包括:R2、MAE、MSE、RMSE和区间覆盖率和区间平均宽度百分比等,代码质量极高,方便学习和替换数据。
基于随机森林RF的数据回归预测,RF回归预测,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。 (0)踩踩(0) 所需:1积分 Node.js版本管理器:nvm 2025-02-01 12:35:42 积分:1 跨平台 UI 框架:flutter ...