RMSE(Root Mean Squared Error):均方根误差,是对MSE值求平方根之后的结果。 避免正负数的差值互相抵消的方式,除了平方之外,还可以求绝对值,我们将每天的差值求绝对值,再相加除以天数,就是MAE指标了。 MAE(Mean Absolute Error):平均绝对误差,就是求出每天真实值和预测值差值的绝对值,求和后再除以天数。 整体来...
所以为了消除量纲的影响,我们可以对这个MSE 开方,得到的结果就第二个评价指标:均方根误差 RMSE(Root Mean Squared Error): 可以看出,RMSE=sqrt(MSE),因此,MSE 和 RMSE 二者是呈正相关的,MSE 值大,RMSE 值也大,所以在评价线性回归模型效果的时候,使用 RMSE 就可以了。 3、平均绝对误差:MAE(Mean Absolute Erro...
sklearn实现线性回归时默认采用R2指标。R2越大,表示模型越好。 R2的好处在于其结果进行归一化,更容易看出模型间的差距。 R2≤1 R2越大越好。当我们预测的模型完全准确时,R2等于最大值1 当R2<0时,说明模型还不如基准模型,很可能数据不存在任何线性关系 # 自定义defR2(y_true, y_pred): u = np.sum((y_t...
RMSE(Root Mean Squared Error):均方根误差,是对MSE值求平方根之后的结果。 避免正负数的差值互相抵消的方式,除了平方之外,还可以求绝对值,我们将每天的差值求绝对值,再相加除以天数,就是MAE指标了。 MAE(Mean Absolute Error):平均绝对误差,就是求出每天真实值和预测值差值的绝对值,求和后再除以天数。 整体来...
2、均方根误差(Root Mean Square Error,RMSE) 3、平均绝对误差(Mean Absolute Error,MAE) MAE=1n∑i=1n|yi−yi~|,∈[0,+∞) 4、R2分数(1-模型没有捕获的信息量占真实标签中所携带的信息量的比例) 分母是真实值的方差,方差越大,携带信息量越多。R2越接近1越好,模型极差情况下会小于0。
我们通常采用MSE、RMSE、MAE、R2来评价回归预测算法。 1、均方误差:MSE(Mean Squared Error) 其中, 为测试集上真实值-预测值。 def rms(y_test, y): return sp.mean((y_test - y) ** 2) 2、均方根误差:RMSE(Root Mean Squard Error) 可以看出,RMSE=sqrt(MSE)。
在回归任务(对连续值的预测)中,常见的评估指标(Metric)有:平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、均方根误差(Root Mean Square Error,RMSE)和平均绝对百分比误差(Mean Absolute Percentage Error,MAPE),其中用得最为广泛的就是MAE和MSE。下面依次来进行一个大致的介绍,同时对于...
简介:回归模型是预测模型的一种,主要用于预测一个或多个因变量与一个或多个自变量之间的依赖关系。为了评估回归模型的性能,需要使用一系列评价指标。这些指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数R2 score。这些指标各有特点,可用于不同情况下的模型评估。
而MAE反应的就是真实误差。因此在衡量中使RMSE的值越小其意义越大,因为它的值能反映其最大误差也是比较小的。 衡量线性回归法最好的指标 R Squared 对于上述的衡量方法,都存在的问题在于,没有一个上下限,比如我们使用auc,其上限为1,则越接近1代表模型越好,0.5附近代表模型和随机猜测基本差不多性能很差,实际上...
在回归任务(对连续值的预测)中,常见的评估指标(Metric)有:平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、均方根误差(Root Mean Square Error,RMSE)和平均绝对百分比误差(Mean Absolute Percentage Error,MAPE),其中用得最为广泛的就是MAE和MSE。下面依次来进行一个大致的介绍,同时对于...