温度特性可以看出VGS(th)随着温度的升高有下降趋势。这表明当温度上升时,VGS(th)变低,就是更低的VGS流过更多的ID。当然,也就是说,这与ID-VGS的温度特性一致。 另外,VGS(th)可用于推算Tj。VGS(th)的温度特性中有直线性,因此可除以系数,根据VGS(th)的变化量计算温度上升。
如果使用一般IGBT和Si-MOSFET使用的驱动电压Vgs=10~15V的话,不能发挥出SiC本来的低导通电阻的性能,所以为了得到充分的低导通电阻,推荐使用Vgs=18V左右进行驱动。Vgs=13V以下的话,有可能发生热失控,请注意不要使用。 三、 Vg - Id 特性 SiC-MOSFET的阈值电压在数mA的情况下定义的话与Si-MOSFET相当,室温下大约 ...
MOSFET的ID-VGS特性,以及界限值温度特 ID-VGS特性和界限值都会随温度变化而变化。使用时请输入使其充分开启的栅极电压。其中,界限值随温度升高而下降,通过观察界限值电压变化,能够计算元件的通道温度。 需要注意的是,对于一定的VGS电压,漏极电流ID会随温度的上升而增加,但是达到10A以后,ID将与温度无关。新人小芯认...
我们将从I-V特性,跨导开始。 跨导 正如我们已经知道的,MOSFET将输入电压转换为输出电流。小信号输出电流与小信号输入电压的比率被称为跨导(gm)。我们还可以将跨导视为输出电流对栅极-源极电压的导数。 可以将线性区域的跨导定义为: (方程式2) 对于饱和区域,为: (方程式3) 那里: ID是漏极电流 VGS是栅极到源极...
VGss :栅极(G)与源极(S)之间所能施加的最大电压值。 3.额定电流 ID(DC):漏极允许通过的最大直流电流值 此值受到导通阻抗、封装和内部连线等的制约,TC=25°C (假定 封装紧贴无限大散热板) ID(Pulse) :漏极允许通过的最大脉冲电流值 此值还受到脉冲宽度和占空比等的制约 ...
VGS电压的两个特性: ①VGS(th)电压小于VGS(th)MOSFET是不开启的,当VGS电压超过阈值后,MOSFET才逐渐导通,即RDS逐渐减小,只有当VGS电压增加到一定程度时,此时RDS达到最小值并基本保持不变。 如上图所示,当ID电流一定的情况下,VGS电压越小,VDS之间的压差越大(VDS电压与RDS成正比)。
根据MOS管的输出特性曲线,取Uds其中的一点,然后用作图的方法,可取得到相应的转移特性曲线。从转移特性曲线上可以看出当Uds为某值时,Id与Ugs之间的关系。 MOS的导通电阻跟结温是呈现正温度系数变化的,也就是结温越高,导通电阻越大。MOS数据手册上一般会画出当VGS=10V时的导通电阻随温度变化的曲线。
该区域内,当Vgs一定时,漏极电流Id几乎不随漏源电压Vds变化,呈恒流特性,因此称为恒流区或饱和区(漏极电流Id饱和)。 由于该区域内,Id仅受Vgs控制,这时MOSFET相当于一个受栅极电压Vgs控制的电流源,当MOSFET用于放大电路时,一般就工作在该区域,所以也称为放大区。