在MMDetection中,你可以通过修改配置文件来指定你要使用的模型、数据集和训练参数。你可以找到一些预定义的配置文件在configs目录下。为了使用Faster R-CNN模型,你需要选择一个与Faster R-CNN相关的配置文件,例如configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py。 4. 开始训练 当你准备好配置文件后,你可以使...
R-CNN的候选框对应了 RPN 阶段的 anchor,只不过 RPN 中的 anchor 是预设密集的,而 R-CNN 面对的 anchor 是动态稀疏的,RPN 阶段基于 anchor 进行分类回归对应于 R-CNN 阶段基于候选框进行分类回归,思想是完全一致的,故 Faster R-CNN 类算法叫做 two-stage,因此可以简化为 one-stage + RoI 区域特征提取 + ...
本人选择的是configs/mask_rcnn_r101_fpn_1x.py根据自己情况修改说明,如果选择faster rcnn请根据自己情况进行修改: # model settings model = dict( type='MaskRCNN', pretrained='torchvision://resnet101', backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), fro...
cd mmdetection/configs/faster_rcnn 我们这次选用faster_rcnn 模型训练,打开faster_rcnn_r50_fpn_1x_coco.py文件 faster_rcnn_r50_fpn_1xcoco.py文件里面调用了三个文件,第一个是模型配置文件,第二个是数据集配置文件,后来两个是配置学习率,迭代次数,模型加载路径等等,我们把原来COCO_detection.py 修改成VOC0...
mmdetection3.0.0是通过一个配置文件来定义数据格式,网络模型,训练测试超参数等等所有的属性。因此,编写一个配置文件即可。值得注意的是官方文档的微调代码给的示例配置文件采取的mask-rcnn模型,如果你只想做目标检测而不是分割的话,请用faster-rcnn。因为mask-rcnn的配置文件写起来更麻烦,而且分割部分也对检测来说是...
有了如此强的预先训练好的 ResNet 骨干网络,将其应用于下游目标检测任务上是否会带来巨大提升?这是一个非常值得思考的问题。为此,MMDetection 团队通过大量的实验和参数调优给这个问题提供了不错的答案。以 Faster R-CNN 为例,在 COCO Val 数据集上性能表如下所示: ...
mmdet的默认格式是coco的,这里就以voc格式为例,data下文件夹摆放位置如图 2、训练 (1)修改configs文件下的文件 可先复制一份,然后自己命名一下。比如retinanet_x101_64x4d_fpn_1x.py,修改的部分主要是dataset settings部分,这部分可直接参考 pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py(如下);还有一部分...
MMDetection源码解析:Faster RCNN(1)--配置文件 faster_rcnn_r50_fpn_1x_coco.py文件位于目录mmdetection/configs/faster_rcnn/下面,主要内容如下: _base_ =['../_base_/models/faster_rcnn_r50_fpn.py','../_base_/datasets/coco_detection.py','../_base_/schedules/schedule_1x.py','../_base_...
首先说明的是我的数据集类别一共有4个,分别是:‘Glass_Insulator’, ‘Composite_Insulator’, ‘Clamp’, ‘Drainage_Plate’。且我跑的模型是’configs/faster_rcnn_r50_fpn_1x.py’。 官方提供的代码中都使用的是coco数据集,虽然我们自定义的数据集也已经转换成coco标准格式了,但是像class_name和class_num这...
本文以Faster R-CNN为例,介绍如何使用MMDetection v2,在VOC格式的自定义数据集上,训练和测试模型。 2021.9.1 更新:适配MMDetection v2.16 目录: MMDetection v2 目标检测(1):环境搭建 MMDetection v2 目标检测(2):数据准备 MMDetection v2 目标检测(3):配置修改 ...