Faster R-CNN是对Fast R-CNN进行的改进,所以模型上有很多相似之处。简单来说,Faster R-CNN其实是在Fast R-CNN模块的基础上加了一个Region Proposal Network模块。 三种网络结构如下: 下图给出的是使用VGG16模型的Faster R-CNN网络结构图,即Faster R-CNN中的conv layers使用的是VGG16的conv layers。 在上图中...
Faster RCNN 先从整个模型的 detector 看起,Faster RCNN 直接继承了TwoStageDetector,没有做出什么改动,所以直接去看TwoStageDetector里面的内容就行了 代码语言:javascript 代码运行次数:0 复制 Cloud Studio代码运行 @DETECTORS.register_module()classFasterRCNN(TwoStageDetector):"""Implementation of `Faster R-C...
1 Faster R-CNN 和 Mask R-CNN 简介 Faster R-CNN (Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks) 是目标检测领域最为经典的方法之一,通过 RPN(Region Proposal Networks) 区域提取网络和 R-CNN 网络联合训练实现高效目标检测。其简要发展历程为: R-CNN。首先通过传统的 se...
Cascade R-CNN是一个顺序的多阶段extension,利用前一个阶段的输出进行下一阶段的训练,阶段越往后使用更高的IoU阈值,产生更高质量的bndbox。Cascade R-CNN简单而有效,能直接添加到其它R-CNN型detector中,带来巨大的性能提升(2-4%) 既然在Faster R-CNN中不能一味的提高IoU来达到输出高质量bbox的目的,那一个很自...
MMDetection是一个基于PyTorch的目标检测工具箱,提供了多种流行的目标检测算法的实现,包括Faster R-CNN。本文将引导读者如何在MMDetection框架下搭建和训练Faster R-CNN模型,并通过实际操作使读者理解目标检测的关键概念和流程。 一、环境配置 在使用MMDetection之前,你需要先准备好以下环境: Python 3.6+ PyTorch 1.1+ tor...
本人选择的是configs/mask_rcnn_r101_fpn_1x.py根据自己情况修改说明,如果选择faster rcnn请根据自己情况进行修改: # model settings model = dict( type='MaskRCNN', pretrained='torchvision://resnet101', backbone=dict( type='ResNet', depth=101, ...
MMDetection是一个基于PyTorch的开源目标检测工具箱,提供了多种目标检测算法的实现,包括Faster R-CNN。在本文中,我们将介绍如何在COCO数据集上使用MMDetection来训练和测试Faster R-CNN模型。 1. 环境配置 首先,你需要确保你的系统中安装了必要的依赖库。MMDetection需要Python 3.6或更高版本,以及PyTorch 1.0或更高版本...
work_dir = './work_dirs/libra_faster_rcnn_x101_64x4d_fpn_1x' # log文件和模型文件存储路径 load_from = None # 加载模型的路径,None表示从预训练模型加载 resume_from = None # 恢复训练模型的路径,None表示不进行训练模型的恢复 workflow = [('train', 1)] ...
MMDetection源码解析:Faster RCNN(3)--RPN Head类 Faster RCNN配置文件faster_rcnn_r50_fpn.py中的 backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True),...
BBoxHead类继承自nn.Module类,定义在\mmdet\models\roi_heads\bbox_heads\bbox_head.py中,其作用是输出ROI Pooling的分类和回归值. import torch import torch.nn as nn import torch.n