1 Faster R-CNN 和 Mask R-CNN 简介 Faster R-CNN (Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks) 是目标检测领域最为经典的方法之一,通过 RPN(Region Proposal Networks) 区域提取网络和 R-CNN 网络联合训练实现高效目标检测。其简要发展历程为: R-CNN。首先通过传统的 se...
Faster RCNN 先从整个模型的 detector 看起,Faster RCNN 直接继承了TwoStageDetector,没有做出什么改动,所以直接去看TwoStageDetector里面的内容就行了 代码语言:javascript 复制 @DETECTORS.register_module()classFasterRCNN(TwoStageDetector):"""Implementation of `Faster R-CNN <https://arxiv.org/abs/1506.014...
3. 配置Faster R-CNN模型 在MMDetection中,你可以通过修改配置文件来指定你要使用的模型、数据集和训练参数。你可以找到一些预定义的配置文件在configs目录下。为了使用Faster R-CNN模型,你需要选择一个与Faster R-CNN相关的配置文件,例如configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py。 4. 开始训练 当...
R-CNN的候选框对应了 RPN 阶段的 anchor,只不过 RPN 中的 anchor 是预设密集的,而 R-CNN 面对的 anchor 是动态稀疏的,RPN 阶段基于 anchor 进行分类回归对应于 R-CNN 阶段基于候选框进行分类回归,思想是完全一致的,故 Faster R-CNN 类算法叫做 two-stage,因此可以简化为 one-stage + RoI 区域特征提取 + ...
序号1 是 Faster R-CNN baseline,可以看出基于高精度预训练的 ResNet 模型 r50-mmcls,经过优化器、学习率和权重衰减系数的调优,Faster R-CNN 上 mAP 性能最高能提升 3.4 (r50-mmcls 是指采用 rsb 策略在 MMClassification 上训练出的预训练模型)。同时我们为每一个 backbone 都搜索了一套最优参数,方便用户参考...
以voc数据集,faster_rcnn为例 修改schedule_1x.py文件 修改最后一行的训练epoch 修改配置文件(/home/lhh/workspace/AnacondaProjects/mmdetection/mmdetection/configs/fast_rcnn)中的fast_rcnn_r50_fpn_1x_coco.py设置配置文件的位置,数据类型的位置 创建文件夹work_dir保存训练过程及结果 ...
本人选择的是configs/mask_rcnn_r101_fpn_1x.py根据自己情况修改说明,如果选择faster rcnn请根据自己情况进行修改: # model settings model = dict( type='MaskRCNN', pretrained='torchvision://resnet101', backbone=dict( type='ResNet', depth=101, ...
MMDetection源码解析:Faster RCNN(3)--RPN Head类 Faster RCNN配置文件faster_rcnn_r50_fpn.py中的 backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True),...
work_dir = './work_dirs/libra_faster_rcnn_x101_64x4d_fpn_1x' # log文件和模型文件存储路径 load_from = None # 加载模型的路径,None表示从预训练模型加载 resume_from = None # 恢复训练模型的路径,None表示不进行训练模型的恢复 workflow = [('train', 1)] ...
MMDetection是一个基于PyTorch的开源对象检测工具箱,它提供了多种先进的检测算法实现,包括Faster R-CNN、Mask R-CNN、YOLOv3等。MMDetection以其简洁易懂的API设计、丰富的实践经验和高效的性能,成为了许多研究者和开发者进行对象检测任务的首选工具。 MMDetection特点 丰富的算法实现:MMDetection支持多种主流的对象检测...