MFCC参数频谱距离基音周期MFCC参数提取This paper proposed a MFCC feature extraction method based on pitch period to improve the performance of speaker recognition.The original speech signals were decomposed into two parts: the speech within the length of multiple pitch periods and that out of the ...
sklearn.feature_extraction.DictVectorizer(sparse=True, …) DictVectorizer.fit_transform(X) X:字典或者包含字典的迭代器返回值:返回sparse矩阵 DictVectorizer.inverse_transform(X) X:array数组或者sparse矩阵 返回值:转换之前的数据格式 DictVectorier.get_feature_names() 返回类别名称 应用: 对以下数据进行特征提取...
Improved MFCC feature extraction combining symmetric ICA algorithm for robust speech recognition. Journal of Multimedia, 7(1), doi:10.4304/jmm.7.1.74-81Huan Zhao, Kai Zhao, He Liu, Fei Yu, Improved MFCC Feature Extraction Combining Symmetric ICA Algorithm for Robust Speech Recognition, Journal of...
本文地址:https://blog.ailemon.me/2021/03/01/speech-acoustic-feature-extraction-the-principle-of-mfcc-and-logfbank-algorithm/ All articles are under Attribution-NonCommercial-ShareAlike 4.0
MFCC Feature Extraction and Classification of Underwater Acoustic Targets 在线阅读 下载PDF 引用 收藏 分享 摘要 水声目标识别技术在水下信息处理中起着非常重要的作用,从辐射噪声中提取水声目标的有效特征一直都是水声目标识别技术的难点所在。提出了一种利用水声目标辐射噪声的梅尔频率倒谱系数(Mel-Frequency ...
Key words :cardiac cycle;low frequency extraction;MFCC feature extraction;embedded systems 0 引言 心血管疾病包括动脉粥样硬化、高血压、高血脂等多种疾病。《中国心血管病报告2017》概要[1]中指出中国心血管疾病患病率持续上升,直到2015年心血管疾病死亡率仍高居中国城乡居民主要疾病死亡率首位,且发病人群低龄化严...
speech(:,i)=audioread(str,samples); speech2(:,i)=audioread(str,(samples+[N_P*16000,N_P*16000])); end MFCCS=zeros(10000,16); MFCCS2=zeros(10000,16); %Featureextraction(featurevectorsascolumns) fori2=1:length(file) [mfccs,FBEs,...
中文说明:此代码可以帮助您应用特征提取方法。 English Description: this code may help you in order to apply feature extraction method. Generates a set of MFCCs; these are obtained from a band-based frequency representation (using the Mel scale by default), and then a discrete cosine transform (...
Feature extraction is an essential part of automatic speech recognition (ASR) to compress raw speech data and enhance features, where conventional implementation methods based on the digital domain have encountered energy consumption and processing speed bottlenecks. Thus, we propose a Mixed-Signal Proces...
Kaldi-compatible online & offline feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd - Provide C++ & Python API pythoncpppytorchkaldimfccplpfeatures-extractionfbankonline-feature-extractorstreaming-feature-extractor ...