the contiguous subarray[4,−1,2,1]has the largest sum =6. click to show more practice. Subscribeto see which companies asked this question 1publicclassSolution {2publicintmaxSubArray(int[] nums) {3if(nums ==null)return0;4if(nums.length == 1)returnnums[0];5intcurmax = 0;6intans ...
classSolution {publicintmaxSubArray(int[] nums) {intmaxSum = Integer.MIN_VALUE;//注意有负数的时候,不能初始化为0intcurrentSum =Integer.MIN_VALUE;for(inti = 0; i < nums.length; i++){if(currentSum < 0) currentSum =nums[i];elsecurrentSum +=nums[i];if(currentSum > maxSum) maxSum ...
LeetCode - The World's Leading Online Programming Learning Platformleetcode.com/problems/maximum-gcd-sum-of-a-subarray/description/ 简单介绍一下题目大意,更详细的描述可以见链接中的原题描述及样例数据: 给定一个长度为n的正整数数组nums。对于nums的任意一个子数组(连续、非空的一段),定义s为子数组...
Lintcode41 Maximum Subarray solution 题解 【题目描述】 Given an array of integers, find a contiguous subarray which has the largest sum. Notice:The subarray should contain at least one number. 给定一个整数数组,找到一个具有最大和的子数组,返回其最大和。 注意:子数组最少包含一个数 【题目链接】...
return2. (because the subarray[-1, 2]sums to 1 and is the longest) 分析:如果subarray[j --- i]的和为K,那么sum[i] - sum[j - 1] = K. 1 public class Solution { 2 public int maxSubArrayLen(int[] nums, int k) { 3 if (nums == null || nums.length == 0) { 4...
class Solution { public int maxSubArray(int[] nums) { int pre = 0, maxAns = nums[0]; for (int x : nums) { pre = Math.max(pre + x, x); maxAns = Math.max(maxAns, pre); } return maxAns; } } 方法2:分治 class Solution { public class Status { public int lSum, rSum, ...
Now to combine two arrays, the maximum subarray sum of the combined array would bemax(p(1)2,p(2)2,p(1)2+p(1)3+p(2)1+p(2)2)max(p2(1),p2(2),p2(1)+p3(1)+p1(2)+p2(2)). The remaining left and right side parts can be maintained easily. ...
classSolution(object):defmaxSubArray(self,nums):""" :type nums: List[int] :rtype: int """localmax,globalmax=0,Nonefornuminnums:globalmax=max(globalmax,localmax+num)localmax=max(0,localmax+num)returnglobalmax
(5kyu) The maximum sum subarray problem consists in finding the maximum sum of a contiguous subsequence in an array or list of integers: maxSequence([-2 , 1, -3, 4, -1 , 2, 1, -5, 4]) # should be 6: [4, -1, 2, 1] ...
然后left[] 和 right[] 里分别存的是,某个位置往左的 maximum subarray 和往右的 maximum subarray java c++ python public class Solution { /** * @param nums: A list of integers * @return: An integer denotes the sum of max two non-overlapping subarrays */ public int maxTwoSubArrays(ArrayLis...