maxSubArray(A, i) = maxSubArray(A, i - 1) >0 ? maxSubArray(A, i - 1) :0 + A[i]; 即得到了n个数的数列与n-1个数的数列的关系,最开始我觉得似乎没有涵盖所有情况,但是后面推导发现所有情况都被这个式子给解决了,很神奇,但是给我自己思考,我确实没有找到思考出这个思想的切入点,实际上它这个...
For example, given the array [−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray [4,−1,2,1] has the largest sum = 6. More practice: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle....
(sum > right_sum): right_sum = sum max_right = j return max_left, max_right, left_sum + right_sum # using divide and conquer to solve maximum subarray problem # time complexity: n*logn def find_maximum_subarray(A, low, high): if (high == low): return low, high, A[low] ...
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. 我的解法:两层循环 第一层循环通过i控制进度,第二层循环计算从i 开始的子数组的和的最大值 C#版解法: publicclassSolution {publicintMaxSubArray(int[] nums) {if...
53. Maximum Subarray 53. Maximum Subarray 方法1: dynamic programming Complexity 易错点: 方法2: divide and conquer 易错点: 方法1: dynamic programming 思路: 因为是连续位置的数列和,只有两种情况,遍历到nums[i]的时候只能选择取或不取。取的话curSum = curSum + nums[i] ,或者以 i 为起点... 猜...
053 Maximum Subarray Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Example: Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation:......
Divide and conquerX + ySublinearGiven an array A of n real numbers, the maximum subarray problem is to find a contiguous subarray which has the largest sum. The k-maximum subarrays problem is to find ksuch subarrays with the...doi:10.1007/978-3-030-34029-2_29Ovidiu Daescu...
本文将介绍计算机算法中的经典问题——最大子数组问题(maximum subarray problem)。所谓的最大子数组问题,指的是:给定一个数组A,寻找A的和最大的非空连续...
Ans: No, Kadane's algorithm is not a divide-and-conquer algorithm. Q5: Can Kadane's algorithm be used to solve the maximum subarray problem in two-dimensional arrays? Ans: No, Kadane's algorithm is only suitable for one-dimensional arrays. Q6: Can Kadane's algorithm be used to find the...
1intmaxSubArray(int* nums,intnumsSize) {2returnmaxSubArrayEx(nums,0,numsSize-1);3}4intmaxSubArrayEx(int* nums,intleft,intright) {5if(left ==right)6returnnums[left];7intcenter = (left + right) /2;8intml =maxSubArrayEx(nums, left, center);9intmr = maxSubArrayEx(nums, center +...