class Solution(object): ## 滑动窗口解法 ## 放弃负的左边窗口 def maxSubArray(self, nums): maxSub = nums[0] curSum = 0 for n in nums: if curSum < 0: curSum = 0 ## 放弃左边的子窗口,如果它们的总和为零 curSum = curSum + n maxSub
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Example: Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6. Follow up: If you have figured ...
publicintmaxSubArray(int[] nums) { intres = Integer.MIN_VALUE, curSum =0; for(intnum : nums) { curSum = Math.max(curSum + num, num); res = Math.max(res, curSum); } returnres; } } Java: Divide and conquer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
Code 1classSolution {2public:3intmaxSubArray(vector<int>&nums) {4intmax = nums[0], sum =0;5for(inti =0; i < nums.size(); i++) {6sum +=nums[i];7if(sum > max) max =sum;8if(sum <0) sum =0;9}10returnmax;11}12};...
Explanation: [4,-1,2,1] has the largest sum = 6. Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. 题目大意 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),...
the contiguous subarray [4,−1,2,1] has the largest sum = 6. More practice: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. Hide Tags Divide and Conquer Array Dynamic Programming ...
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Day2-2 leetcode 53. Maximum Subarray Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer ...
Divide and conquerX + ySublinearGiven an array A of n real numbers, the maximum subarray problem is to find a contiguous subarray which has the largest sum. The k-maximum subarrays problem is to find ksuch subarrays with the...doi:10.1007/978-3-030-34029-2_29Ovidiu Daescu...
Ans: No, Kadane's algorithm is not a divide-and-conquer algorithm. Q5: Can Kadane's algorithm be used to solve the maximum subarray problem in two-dimensional arrays? Ans: No, Kadane's algorithm is only suitable for one-dimensional arrays. Q6: Can Kadane's algorithm be used to find the...